A. | ① | B. | ② | C. | ③ | D. | ④ |
分析 根据D,E分别是△ABC的边AB,AC的中点,得到DE是△ABC的中位线,再利用中位线的性质得到DE与BC的关系,判断三角形相似,根据相似三角形的性质对所给命题进行判断.
解答 解:∵D,E分别是△ABC的边AB,AC的中点,
∴DE是△ABC的中位线,
∴DE=$\frac{1}{2}$BC,DE∥BC.
∵DE=$\frac{1}{2}$BC,
∴BC=2DE.
∴故选项①正确.
∵DE∥BC,
∴△ADE∽△ABC.
∴故选项②正确.
∵△ADE∽△ABC,
∴$\frac{AD}{AB}=\frac{AE}{AC}$,
∴故选项③正确.
∵DE:BC=1:2,又△ADE∽△ABC,
∴S△ADE:S△ABC=1:4,
∴S△ADE:S四边形BCED=1:3.
∴故④错误.
故选:D.
点评 本题考查的是相似三角形的判定与性质,根据题意得到DE是三角形的中位线,再用中位线的性质判定相似三角形,然后用相似三角形的性质判定三角形与四边形的面积关系.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x≠1 | B. | x≠2 | C. | x≠1 且 x≠2 | D. | x≠1或 x≠2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com