精英家教网 > 初中数学 > 题目详情
18、如图,∠C=90°,AD平分∠BAC,DE⊥AB于E,则BC=DB+CD=DB+
DE
;若CD=3,AD=5,则AE=
4
分析:根据角平分线的性质可得到CD=DE,故BC=DB+CD=DB+DE;CD=3,AD=5,根据勾股定理可得到AC=4,因为CD=DE,AD=AD,故可根据HL判定△ACD≌△AED,故AC=AE.
解答:解:∵AD平分∠BAC,
∴CD=DE,
∴BC=DB+CD=DB+DE,
∵CD=3,AD=5,
∴AC=4,
∵∠C=90°,CD=DE,AD=AD,
∴△ACD≌△AED,
∴AC=AE=4.
故答案为:DE、4.
点评:本题考查角平分线的性质和勾股定理.角平分线上的任意一点到角的两边距离相等.比较简单,属于基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,∠BAC=90°,AD⊥BC,△ABE,△ACF都是等边三角形,则S△ABE:S△ACF等于(  )
A、AB:ACB、AD2:DC2C、BD2:DC2D、AC2:AB2

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,∠AOB=90°,∠B=30°,△AOB′可以看作是由△AOB绕点O顺时针旋转α角度得到的,若点A′在AB上,则旋转角α的大小可以是
60
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,∠C=90°,AD平分∠CAB,DE⊥AB于E,若DB=2DE=6cm,则BC=
9
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,∠C=90°,⊙C与AB相交于点D,AC=5,CB=12,求AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠AOB=90°,0C⊥OD,且∠BOC=
23
∠AOC,求∠BOD,∠AOD的度数.

查看答案和解析>>

同步练习册答案