【题目】某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.
(1)试求出y与x之间的一个函数关系式;
(2)利用(1)的结论:
①求每千克售价为多少元时,每天可以获得最大的销售利润.
②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?
【答案】(1)函数关系式为y=﹣2x+112;(2)①每千克售价为38元时,每天可以获得最大的销售利润;②一次进货最多只能是1300千克.
【解析】
试题分析:(1)根据图中的信息可看出,图形经过(37,38),(39,34),(40,32),根据待定系数法可求函数关系式;(2)①根据函数的最值问题即可求解;②根据“特产”的保存时间和运输路线的影响,“特产”的销售时间最多是25天.要想使售价不低于30元/千克,就必须在最多25天内卖完,当售价为30元/千克时,销售量已经由(1)求出,因此可以根据最多进货的量÷30元/千克时的销售量≤25天,由此来列不等式,求出最多的进货量.
试题解析:(1)设y与x之间的一个函数关系式为y=kx+b,则,
解得.
故函数关系式为y=﹣2x+112;
(2)①依题意有
w=(x﹣20)(﹣2x+112)=﹣2(x﹣38)2+324,
故每千克售价为38元时,每天可以获得最大的销售利润;
②由题意可得,售价越低,销量越大,即能最多的进货,
设一次进货最多m千克,
则≤30﹣5,
解得:m≤1300.
故一次进货最多只能是1300千克.
科目:初中数学 来源: 题型:
【题目】初一(一)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是( )
A. 164 B. 178 C. 168 D. 174
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.如图,已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”.
(1)若函数y=kx+b的图象过点(3,1),求b的值;
(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1:2,求函数y=kx+b的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣.
当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
当A、B两点都不在原点时,如图2,点A、B都在原点的右边
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;
如图3,当点A、B都在原点的左边,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;
如图4,当点A、B在原点的两边,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;
回答下列问题:
(1)数轴上表示1和6的两点之间的距离是 ,数轴上表示2和-3的两点之间的距离是 ;
(2)数轴上若点A表示的数是x,点B表示的数是-4,则点A和B之间的距离是 ,若∣AB∣=3,那么x为 ;
(3)当x是 时,代数式;
(4)若点A表示的数,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,点Q与点P 相距1个单位?(请写出必要的求解过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com