精英家教网 > 初中数学 > 题目详情
如图,一次函数y=-x-1与反比例函数y=
m
x
交于第二象限点A.一次函数y=-x-1与坐标轴分别交于B、C两点,连接AO,若tan∠AOB=
1
3

(1)求反比例函数的解析式;
(2)求△AOC的面积.
(1)设A(a,b),结合题意,
-a-1=b,
tan∠AOB=
1
3

即有3b+a=0;
可得出a=-
3
2
,b=
1
2

即A(-
3
2
1
2
),
代入反比例函数解析式中,有
1
2
=
m
-
3
2

得m=-
3
4

故反比例函数解析式为:y=-
3
4x


(2)因为一次函数y=-x-1与坐标轴交C点,
令x=0,得y=-1,
即C(0,-1);
所以OC=1;
又∵A(-
3
2
1
2
),
即点A到x轴的距离为
1
2

因为一次函数y=-x-1与x轴交B点,
令y=0,得x=-1,
即B(-1,0);
则OB=1,
所以S△AOC=
1
2
OB•
1
2
+
1
2
OB•OC=
3
4
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,双曲线y=
k
x
(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若梯形ODBC的面积为3,则双曲线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图.已知A、B两点的坐标分别为A(0,2
3
),B(2,0).直线AB与反比例函数y=
m
x
的图象交于点C和点D(-1,a).
(1)求直线AB和反比例函数的解析式.
(2)求∠ACO的度数.
(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少时,OC′⊥AB,并求此时线段AB’的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,直线y=kx+b与x轴交于点A,且与双曲线y=
m
x
交于点B(4,2)和点C(n,-4).
(1)求直线y=kx+b和双曲线y=
m
x
的解析式;
(2)根据图象写出关于x的不等式kx+b<
m
x
的解集;
(3)点D在直线y=kx+b上,设点D的纵坐标为t(t>0).过点D作平行于x轴的直线交双曲线y=
m
x
于点E.若△ADE的面积为
7
2
,请直接写出所有满足条件的t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知反比例函数y=-
6
x
,当-3<x<3且x≠0时,y的取值范围是(  )
A.y<-2B.y>2C.-2<y<2D.y>2或y<-2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在反比例函数y=
k
x
(k>0)上,点C在x轴的正半轴上且坐标为(4,0),△ODC是以CO为斜边的等腰直角三角形.
(1)求反比例函数的解析式;

(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求OF的长;

(3)直线y=-x+3交x轴于M点,交y轴于N点,点P是双曲线y=
k
x
(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴于R点,PQ,PR与直线MN交于H,G两点.给出下列两个结论:①△PGH的面积不变;②MG•NH的值不变,其中有且只有一个结论是正确的,请你选择并证明求值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=
k
x
(x>0)
的图象经过点A,若△BEC的面积为6,则k等于(  )
A.3B.6C.12D.24

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,点A(-3,4)关于y轴的对称点为点B,连接AB,反比例函数y=
k
x
(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.
(1)求k的值;
(2)判断△QOC与△POD的面积是否相等,并说明理由.

查看答案和解析>>

同步练习册答案