以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;
如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,
① 求证:HE=HG;
② 四边形EFGH是什么四边形?并说明理由.
(1)四边形EFGH是正方形.
(2) ①设∠ADC=α(0°<α<90°),
在□ABCD中,AB∥CD,∴∠BAD=180°-∠ADC=180°-a;
∵△HAD和△EAB都是等腰直角三角形,∴∠HAD=∠EAB=45°,
∴∠HAE=360°-∠HAD-∠EAB-∠BAD
=360°-45°-45°-(180°-a)=90°+a.
∵△HAD和△GDC都是等腰直角三角形,
∴∠DHA=∠CDG= 45°,
∴∠HDG=∠HAD+∠ADC+∠CDG=90°+a=∠HAE.
∵△AEB和△DGC都是等腰直角三角形,∴AE=AB,DG=CD,
在□ABCD中,AB=CD,∴AE=DG,
∵△HAD是等腰直角三角形,∴HA=HD,
∴△HAE≌△HDG,∴HE=HG.
②四边形EFGH是正方形.
由②同理可得:GH=GF,FG=FE,∵HE=HG(已证),
∴GH=GF=FG=FE,∴四边形EFGH是菱形;
∵△HAE≌△HDG(已证),∴∠AHE=∠DHG,
又∵∠AHD=∠AHG+∠DHG=90°,
∴∠EHG=∠AHG+∠AHE=90°,
∴四边形EFGH是正方形.
科目:初中数学 来源: 题型:
等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程 x2 -12x+k=O的两个根,则k的值是( )
A:27 B:36 C:27或36 D:18
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知函数y=(x>0)的图象经过点A,B,点A的坐标为
(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.
(1)求△OCD的面积;
(2)当BE=AC时,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
函数 , 的图象如图所示,则结论: ① 两函数图象的交点
A的坐标为(3 ,3 ); ② 当x>3时,y2>y1 ; ③ 当 x=1时, BC = 8; ④当 x逐
渐增大时,y1随着x的增大而增大,y2随着x 的增大而减小.其中正确结论的序号是
.
查看答案和解析>>
科目:初中数学 来源: 题型:
一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算?
A. 甲 B. 乙 C. 一样 D.无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
每天锻炼一小时,健康生活一辈子”,自开展“阳光体育运动”以来,学校师生的锻炼意识都增强了,某校有学生8200人,为了解学生每天的锻炼]
时间,学校体育组随机调查了部分学生,统计结果如
表所示。
表格中,m= ;
这组数据的众数是 ;
该校每天锻炼时间达到1小时的约有 人。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,OA=4,AB=5,点D在反比例函数(k>0)的图象上,,点P在y轴负半轴上,OP=7.
(1)求点B的坐标和线段PB的长;
(2)当时,求反比例函数的解析式
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com