精英家教网 > 初中数学 > 题目详情
已知,在平面直角坐标系中,点A的坐标为(0,6),点B和点C在x轴上(点B在点C的左边,点C在原点的右边),作BE⊥AC,垂足为E(点E与点A不重合),直线BE与y轴交于点D,若BD=AC.
(1)建立直角坐标系,按给出的条件画出图形;
(2)求点B的坐标;
(3)设OC长为m,△BOD的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.
分析:(1)分两种情况,①当B在原点左边时,②当B在原点右边时分别画出图象即可;
(2)①当B在原点左边时,利用同角的余角相等,得到∠1=∠2,再证△AOC≌△BOD,得到OA=OB,因为A(0,6),所以B(-6,0);
②当B在原点右边时,同①可证OA=OB=6,所以B(6,0);
(3)分两种情况:当B在原点左侧时,因为△AOC≌△BOD,所以OC=DO=m,即可得到S=
1
2
OB•OD=3m(0<m<6);当B在原点右侧时,同理可得S=3m(m>6);
解答:解:(1)依题意,分两种情况
情况一:当点B在原点的左边时:如图1所示;
情况二:当点B在原点的右边时:如图2所示;


(2)如图1:在Rt△AOC中,∵∠AOC=90°
∴∠1+∠3=90°
∵BE⊥AC,垂足为E,
∴∠BEC=90°,
∴∠2+∠3=90°,∴∠1=∠2,
在Rt△AOC中和Rt△BOD中
∠AOC=∠BOD
∠1=∠2
AC=BD

∴Rt△AOC≌Rt△BOD(AAS),
∴OA=OB,
∴A(0,6)∴B(-6,0),
(如图2)同一可证得:OA=OB
∴B(6,0),
∴B点的坐标为(-6,0)或(6,0);

(3)如图1中,Rt△AOC≌Rt△BOD
∴OC=OD=m
∴S=
1
2
•OB•OD=
1
2
×6×m

∴S=3m     其中0<m<6,
如图2中  同理可得:S=3m   其中m>6,
∴所求函数解析式为:S=3m,其中m>0,且m≠6.
点评:此题主要考查了一次函数的综合应用以及勾股定理和全等三角形等知识,利用数形结合以及分类讨论即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标xOy中,反比例函数y=
k
x
的图象与y=
3
x
的图象关于x轴对称,又与直线y=ax+2交于点A(m,3).已知点M(-3,y1)、N(l,y2)和Q(3,y3)三点都在反比例函数y=
k
x
的图象上. 
(l)比较y1、y2、y3的大小;
(2)试确定a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系里,如图,已知直线:y=-x+3
2
交y轴于点A,交x轴于点B,三角板OCD如图1置,其中∠D=30°,∠OCD=90°,OD=7,把三角板OCD绕点.顺时针旋转15°,得到△OC1D1(如图2),这时OC1交AB于点E,C1D1交AB于点F.
(1)求∠EFC1的度数;
(2)求线段AD1的长;
(3)若把△OC1D1,绕点0顺时针再旋转30.得到△OC2D2,这时点B在△OC2D2的内部、外部、还是边上?证明你的判断.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标中,已知点P(3-m,2m-4)在第一象限,则实数m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,已知直线y=kx+b与直线y=
1
2
x
平行,分别交x轴,y轴于A,B两点,且A点的横坐标是-4,以AB为边在第二象限内作矩形ABCD,使AD=
5

(1)求矩形ABCD的面积;
(2)过点D作DH⊥x轴,垂足为H,试求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为
y=-
6
x
y=-
6
x

查看答案和解析>>

同步练习册答案