【题目】(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:① DC = BC; ②AD+AB=AC.请你证明结论②;
(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
【答案】(1)证明见解析(2) 成立,证明见解析
【解析】(1)证明: ∵∠MAN=120°,AC平分∠MAN.
∴∠DAC = ∠BAC =600
∵∠ABC=∠ADC=90°,
∴∠DCA=∠BCA=30°,
在Rt△ACD,Rt△ACB中,∠DCA=30°
∠BCA=30°
∴AC=2AD, AC = 2AB,
∴2AD=2AB
∴AD=AB
∴AD+AB=AC.
(2)解:(1)中的结论① DC = BC; ②AD+AB=AC都成立,
理由一:如图2,在AN上截取AE=AC,连结CE,
∵∠BAC =60°,
∴△CAE为等边三角形,
∴AC=CE,∠AEC =60°,
∵∠DAC =60°,∴∠DAC =∠AEC,
∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,
∴∠ADC =∠EBC, ∴,
∴DC = BC,DA = BE, …
∴AD+AB=AB+BE=AE, ∴AD+AB=AC.
或者理由二:如图,过C作CE⊥AN,CF⊥AM于E、F
证明△BCE≌△DCF,得到
DC=BC,BE=DF
即AC=AE+AF=AB+AD亦可
得分参照理由一给分
(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.
(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.
科目:初中数学 来源: 题型:
【题目】甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调査分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.
甲校 | 54 | 68 | 69 | 76 | 76 | 76 | 76 | 77 | 79 | 82 | 83 | 83 | 84 | 84 | 87 |
87 | 87 | 88 | 88 | 89 | 89 | 89 | 89 | 89 | 90 | 92 | 92 | 92 | 93 | 94 | |
乙校 | 57 | 61 | 63 | 71 | 72 | 73 | 76 | 79 | 80 | 83 | 84 | 84 | 84 | 85 | 85 |
87 | 87 | 88 | 89 | 89 | 90 | 90 | 91 | 92 | 92 | 92 | 92 | 92 | 94 | 94 |
(1)请根据乙校的数据补全条形统计图;
(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;
平均数 | 中位数 | 众数 | |
甲校 | 83.4 | 87 | 89 |
乙校 | 83.2 |
(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由;甲校: ;乙校; .
(4)综合来看,可以推断出 校学生的数学学业水平更好一些,理由为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与抛物线相交于A和B(4,n)两点,点P是抛物线位于线段AB上方异于点A,B的一个动点,过点P作PQ⊥x轴,交线段AB于点Q.
(1)求抛物线的解析式;
(2)在P点运动过程中,线段PQ的长是否存在最大值?若存在,求出这个最大值,并求出此时P点的坐标;若不存在,请说明理由;
(3)直线AB与y轴交于点C,与x轴交于点D,若△PBQ与△ODC相似,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC的内切圆⊙O与两直角边AB、BC分别相切于点D、E,过劣弧 (不包括端点D、E)上任一点作⊙O的切线MN与AB、BC分别交于点M、N.若⊙O的半径为r,则Rt△MBN的周长为( )
A. r B. r C. 2r D. r
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.
组别 | 正确字数x | 人数 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根据以上信息完成下列问题:
(1)统计表中的m= ,n= ,并补全条形统计图;
(2)扇形统计图中“C组”所对应的圆心角的度数是 ;
(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.
(1)求证:四边形DBEC是菱形;
(2)若AD=3,DF=1,求四边形DBEC面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,等边的顶点在轴的负半轴上,点的坐标为,则点坐标为_______;点是位于轴上点左边的一个动点,以为边在第三象限内作等边,若点.小明所在的数学兴趣合作学习小组借助于现代互联网信息技术,课余时间经过探究发现无论点在点左边轴负半轴任何位置,,之间都存在着一个固定的一次函数关系,请你写出这个关系式是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.
(1)每个文具盒、每支钢笔各多少元?
(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求与的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.
(1)求证:①△ABG≌△AFG; ②求GC的长;
(2)求△FGC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com