精英家教网 > 初中数学 > 题目详情
如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的
8
15
?若存在,请求出点P的坐标;若不存在,请说明理由.
(1)将点C(2,2)代入直线y=kx+4,可得k=-1
所以直线的解析式为y=-x+4
当x=1时,y=3,
所以B点的坐标为(1,3)
将B、C、O三点的坐标分别代入抛物线y=ax2+bx+c,
可得
a+b+c=3
4a+2b+c=2
c=0

解得
a=-2
b=5
c=0

所以所求的抛物线为y=-2x2+5x.

(2)因为ON的长是一定值,
所以当点P为抛物线的顶点时,△PON的面积最大,
又该抛物线的顶点坐标为(
5
4
25
8
),此时tan∠PON=
y
x
=
25
8
5
4
=
5
2


(3)存在;
把x=0代入直线y=-x+4得y=4,所以点A(0,4)
把y=0代入抛物线y=-2x2+5x
得x=0或x=
5
2
,所以点N(
5
2
,0)
设动点P坐标为(x,y),
其中y=-2x2+5x (0<x<
5
2

则得:S△OAP=
1
2
|OA|•x=2x
S△ONP=
1
2
|ON|•y=
1
2
×
5
2
•(-2x2+5x)=
5
4
(-2x2+5x)
由S△OAP=
8
15
S△ONP
即2x=
8
15
5
4
(-2x2+5x)
解得x=0或x=1,舍去x=0
得x=1,由此得y=3
所以得点P存在,其坐标为(1,3).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=(1-m)x2+4x-3开口向下,与x轴交于A(x1,0)和B(x2,0)两点,其中x1<x2
(1)求m的取值范围;
(2)若x12+x22=10,求抛物线的解析式,并在给出的直角坐标系中画出这条抛物线;
(3)设这条抛物线的顶点为C,延长CA交y轴于点D.在y轴上是否存在点P,使以P、B、O为顶点的三角形与△BCD相似?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中有点A(-1,0),点B(4,0),以AB为直径的半圆交y轴正半轴于点C.
(1)求点C的坐标;
(2)求过A,B,C三点的抛物线的解析式;
(3)在(2)的条件下,若在抛物线上有一点D,使四边形BOCD为直角梯形,求直线BD的解析式;
(4)设点M是抛物线上任意一点,过点M作MN⊥y轴,交y轴于点N.若在线段AB上有且只有一点P,使∠MPN为直角,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,将一块腰长为
5
的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.
(1)求点A、点B的坐标;
(2)求抛物线的解析式;
(3)设(2)中抛物线的顶点为D,求△DBC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF.下列结论:①BE+BF的值不变;②
BF
AF
=
BG
AG
,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=
1
4
S△ABC;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

用长6米的铝合金条制成如图所示的矩形窗框,则这个窗户的最大透光面积为______米2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.
(1)当日产量为多少时,每日获得的利润为1750元?
(2)当日产量为多少时,可获得最大利润?最大利润是多少?

查看答案和解析>>

同步练习册答案