精英家教网 > 初中数学 > 题目详情

平面内的两条直线有相交和平行两种位置关系.
(1)AB∥CD.如图a,由AB∥CD,有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD+∠D=∠B.

如图b,以上结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明理由;

(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点E,如图c,则∠BPD﹑∠B﹑∠D﹑∠BED之间有何数量关系?(不需说明理由);

(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.

⑴不成立,∠BPD=∠B+∠D;⑵∠BPD=∠B+∠D+∠BED;⑶360°。              

解析试题分析:(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;
(2)作射线QP,根据三角形的外角性质可得;
(3)连接EG并延长,根据三角形的外角性质,把角转化到四边形中再求解.

(1)不成立.结论是∠BPD=∠B+∠D
如图,延长BP交CD于点E,

∵AB∥CD
∴∠B=∠BED
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论:∠BPD=∠BQD+∠B+∠D.
(3)如图,连接EG并延长,

由图象可知:∠AGB=∠A+∠B+∠E,
又∵∠AGB=∠CGF,
在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
考点:本题考查的是平行线的性质,三角形外角的性质
点评:解答本题的关键是熟练掌握三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、在同一平面内,两条不相重合的直线位置关系有两种:
相交
平行

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

在同一平面内,两条不相重合的直线位置关系有两种:________和________.

查看答案和解析>>

同步练习册答案