精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,函数y=x与反比例函数y=
16
x
(x>0)的图象相交于点P,以P为顶点作45°的角,角的两边分别交坐标轴于A,B,C,D.连结AB,CD.
(1)求OP的长;
(2)若点C(-6,0),求D点的坐标;
(3)△OAB的周长是否变化?若不变化,试求出△OAB的周长;若变化,请说明理由;
(4)当OP⊥AB时:①求证:OP⊥CD;②求△OAB的面积.
(1)作PE⊥x轴于E,PF⊥y轴于F,如图,
解方程组
y=x
y=
16
x
x=4
y=4
x=-4
y=-4
(x>0,舍去),
∴P点坐标为(4,4),
∴OP=
42+42
=4
2


(2)设直线PC的解析式为y=kx+b,
把C(-6,0)和P(4,4)代入得
-6k+b=0
4k+b=4
,解得
k=
2
5
b=
12
5

∴直线PC的解析式为y=
2
5
x+
12
5

∴A点坐标为(0,
12
5
),
∴AF=OF-OA=
8
5

把△PAF绕点P逆时针旋转90°得到△PGE,
∴∠PEG=∠PFA=90°,EG=FA,∠APG=90°,PA=PG,
而∠PEO=90°,
∴点O、E、G点共线,
∴BG=BE+EG=BE+AF,
∵∠APB=45°,
∴∠BPG=45°,
在△PBA和△PBE中
PA=PG
∠APB=∠GPB
PB=PB

∴△PBA≌△PBE(SAS),
∴AB=BG=AF+BE,
设OB=t,则BE=4-t,AB=
8
5
+4-t=
28
5
-t,
在Rt△OAB中,∵OA2+OB2=AB2
∴(
12
5
2+t2=(
28
5
-t)2,解得t=
16
7

∴OB=
16
7

∵OBPF,
∴△DOB△DFP,
OD
DF
=
OB
PF
,即
OD
OD+4
=
16
7
4
,解得OD=
16
3

∴D点坐标为(0,-
16
3
);

(3)△OAB的周长不变化,其周长为8.
由(2)得到AB=BG=AF+BE,
∴△OAB的周长=OA+OB+AB=OA+OB+AF+BE=AF+OE=4+4=8;

(4)①证明:OP⊥AB于H,如图,
∵OP平分∠AOB,
∴OH垂直平分AB,
∴OA=OB,PA=PB,
∴OP平分∠APB,即∠APO=∠BPO,
∵∠POC=∠POA+∠AOC=135°,
∠POD=∠POB+∠BOD=135°,
∴∠POC=∠POD,
在△POC和△POB中
∠CPO=∠DPO
PO=PO
∠POC=∠POD

∴△POC≌△POB(ASA),
∴OC=OD,
∵PO平分∠COD,
∴PO⊥CD;
②∵∠APO=∠BPO,∠APB=45°,
∴∠APO=∠BPO=22.5°,
而∠OPE=45°,
∴∠HPB=∠BPE=22.5°,
在△BHP和△BEP中
∠PHB=∠PEB
∠HPB=∠EPB
PB=PB

∴△BHP≌△BEP(AAS),
∴PH=PE=4,
∵OP=4
2

∴OH=4
2
-4=4(
2
-1)
∴AB=2OH=8(
2
-1),
∴△OAB的面积=
1
2
×4(
2
-1)×8(
2
-1)=48-32
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=4-x与反比例函数y=
m
x
(m>0,x>0)的图象交于A,B两点,与x轴,y轴分别相交于C,D两点.
(1)如果点A的横坐标为1,利用函数图象求关于x的不等式4-x<
m
x
的解集;
(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=ax+b的图象与反比例函数y=
k
x
的图象交于M、N两点.
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围;
(3)设直线与x轴交于点A,连接OM、ON,求三角形OMN的面积;
(4)在平面直角坐标系中是否存在一点P,使以P,A,O,N为顶点的四边形为
平行四边形?若存在,请直接写出点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图将直线y=
3
x
向左平移m个单位,与双曲线y=-
6
x
交于点A,与x轴交于点B,则OB2-OA2+
1
2
AB2=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数y=
12
x
的图象与一次函数y=kx+4的图象相交于P、Q两点,并且P点的纵坐标是6.
(1)求这个一次函数的解析式;(2)求△POQ的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知圆柱体体积V(m3)一定,则它的底面积Y(m2)与高x(m)之间的函数图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,双曲线y=
k
x
(x>0)
经过四边形OABC的顶点A、C,∠B=90°,OC平分OA与x轴的夹角,ABx轴,且S四边形OABC=2,将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则k=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线l1:x=1,l2:x=2,l3:x=3,l4:x=4,…,与函数y=
2
x
(x>0)的图象分别交于点A1、A2、A3、A4、…;与函数y=
5
x
(x>0)
的图象分别交于点B1、B2、B3、B4、….如果四边形A1A2B2B1的面积记为S1,四边形A2A3B3B2的面积记为S2,四边形A3A4B4B3的面积记为S3,…,以此类推.则S10的值是(  )
A.
19
60
B.
23
88
C.
25
104
D.
63
220

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两个反比例函数y=
k
x
y=
1
x
在第一象限内的图象如图所示,点P在y=
k
x
的图象上,PC⊥x轴于点C,交y=
1
x
的图象于点A,PD⊥y轴于点D,交y=
1
x
的图象于点B,当点P在y=
k
x
的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是______.

查看答案和解析>>

同步练习册答案