【题目】已知△ABC是等边三角形.
(1)如图1,点D是边BC的中点,∠ADE=60°,且DE交△ABC外角∠ACF的平分线CE于点E,求证:AD=DE;(提示:取AB的中点G,连接DG)
(2)小颖对(1)题进行了探索:如果将(1)题中的“点D是边BC的中点”改为“点D是直线BC上任意一点(B、C两点除外)”,其它条件不变,结论AD=DE是否仍然成立?小颖将点D的位置分为三种情形,画出了图2、图3、图4,现在请你在图2、图3、图4中选择一种情形,帮小颖验证:结论AD=DE是否仍然成立?
【答案】(1)证明见解析;(2)成立,证明见解析.
【解析】
(1)取AB的中点G,连接DG,根据“ASA”证明△AGD≌△DCE即可;
(2)小颖的观点正确.如图2中,在AB上取一点M,使BM=BD,连接MD.如图3中,延长BA到M,使AM=CD,利用全等三角形的性质解决问题即可.
解:(1)取AB的中点G,连接DG,
∵△ABC是等边三角形,
∴∠BAC=∠B=∠ACB=60°,BA=BC=AC,AD⊥BC,
∴CD=,∠BAD=30°,
∵G是AB中点,
∴AG=DG=,
∴AG=CD, △BGD是等边三角形,∠BGD=60°,∠AGD=120°.
∵∠ADE=60°,
∴∠CDE=30°,
∴∠GAD=∠CDE.
∵CE是外角∠ACF的平分线,
∴∠ECA=60°,
∴∠DCE=120°.
∴∠AGD=∠DCE.
在△AGD和△DCE中,
,
∴△AGD≌△DCE(ASA).
∴AD=DE.
(2)小颖的观点正确.
证明:如图2中,在AB上取一点M,使BM=BD,连接MD.
∵△ABC是等边三角形,
∴∠B=60°,BA=BC.
∴△BMD是等边三角形,∠BMD=60°.∠AMD=120°.
∵CE是外角∠ACF的平分线,
∴∠ECA=60°,∠DCE=120°.
∴∠AMD=∠DCE.
∵∠ADE=∠B=60°,∠ADC=∠2+∠ADE=∠1+∠B
∴∠1=∠2.
又∵BA﹣BM=BC﹣BD,即MA=CD.
在△AMD和△DCE中,
,
∴△AMD≌△DCE(ASA).
∴AD=DE.
如图3中,延长BA到M,使AM=CD,
与(1)相同,可证△BDM是等边三角形,
∵∠CDE=∠ADB+∠ADE=∠ADB+60°,
∠MAD=∠B+∠ADB=∠ADB+60°,
∴∠CDE=∠MAD,
同理可证,△AMD≌△DCE,
∴AD=DE.
如图4中,同法可证AD=DE.
科目:初中数学 来源: 题型:
【题目】下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程
解:设x2﹣4x=y,
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)该同学第二步到第三步运用了因式分解的 (填序号).
A.提取公因式 B.平方差公式
C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后? .(填“是”或“否”)如果否,直接写出最后的结果 .
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列表格的对应值:
x | 3.23 | 3.24 | 3.25 | 3.26 |
-0.06 | -0.02 | 0.03 | 0.09 |
写出方程(a≠0,a,b,c为常数)一个解x的范围是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4ni=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.
计算:(1)i.i2.i3.i4
(2)i+i2+i3+i4+…+i2017+i2018.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,3)、B(﹣5,1)、C(﹣2,1).
(1)△ABC的面积为______.
(2)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1的坐标.
(3)请说明△A2B2C2是由△A1B1C1经过怎样的变换得到的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形网格中,网格线的交点称为格点,如图是 3×3 的正方形网格,已知 A,B 是两格点,C是不同于点A和B的格点,下列说法正确的是( ).
A.ΔABC是直角三角形,这样的点C有4个
B.ΔABC是等腰三角形,这样的点C有4个
C.ΔABC是等腰直角三角形,这样的点C有6个
D.ΔABC是等腰直角三角形,这样的点C有2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市“健益”超市购进一批元/千克的绿色食品,如果以元/千克销售,那么每天可售出千克.由销售经验知,每天销售量(千克)与销售单价(元)存在如下图所示的一次函数关系.
试求出与的函数关系式;
设“健益”超市销售该绿色食品每天获得利润为元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
根据市场调查,该绿色食品每天可获利润不超过元,现该超市经理要求每天利润不得低于元,请你帮助该超市确定绿色食品销售单价的范围(直接写出).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a、b都是正整数,且抛物线y=ax2+bx+l与x轴有两个不同的交点A、B.若A、B到原点的距离都小于1,则a+b的最小值等于( )
A. 16 B. 10 C. 4 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求点D坐标及二次函数的解析式;
(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com