精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=BC=AC,BD是中线,延长BC到E,使CE=CD.
(1)已知CD=3,求BE的长;
(2)求证:BD=ED;
(3)若点F是BE边的中点,试判断DF与BE的位置关系并简要说明理由.
分析:(1)利用三角形的中线的性质得到BC=AC=2CD=6,从而求得线段BE的长;
(2)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.
(3)利用等腰三角形的性质即可得到DF和BE是垂直关系.
解答:解:(1)∵AB=BC=AC,BD是中线,
∴BC=AC=2CD
∵CD=3,
∴BC=2CD=6,CE=CD=3
∴BE=BC+CE=6+3=9
(2)∵△ABC是等边三角形,BD是中线,
∴∠ABC=∠ACB=60°.
∠DBC=30°(等腰三角形三线合一).
又∵CE=CD,
∴∠CDE=∠CED.
又∵∠BCD=∠CDE+∠CED,
∴∠CDE=∠CED=
1
2
∠BCD=30°.
∴∠DBC=∠DEC.
∴DB=DE(等角对等边).
(3)∵点F是BE边的中点,
∴DF是BE边的中线,
∵BD=ED
∴DF⊥BE
点评:此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题第二问的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案