A. | 7 | B. | 11 | C. | 12 | D. | 16 |
分析 由根与系数的关系可得出m+n=2t、mn=t2-2t+4,将其代入(m+2)(n+2)=mn+2(m+n)+4中可得出(m+2)(n+2)=(t+1)2+7,由方程有两个实数根结合根的判别式可求出t的取值范围,再根据二次函数的性质即可得出(m+2)(n+2)的最小值.
解答 解:∵m,n是关于x的一元二次方程x2-2tx+t2-2t+4=0的两实数根,
∴m+n=2t,mn=t2-2t+4,
∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.
∵方程有两个实数根,
∴△=(-2t)2-4(t2-2t+4)=8t-16≥0,
∴t≥2,
∴(t+1)2+7≥(2+1)2+7=16.
故选D.
点评 本题考查了根与系数的关系、根的判别式以及二次函数的最值,根据根与系数的关系找出(m+2)(n+2)=(t+1)2+7是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com