【题目】根据下列已知条件,能画出唯一的△ABC的是( )
A. AB=3,BC=4,CA=8 B. AB=4,BC=3,∠A=30°
C. ∠A=35°,∠B=65°,AB=7 D. ∠C=90°,AB=8
科目:初中数学 来源: 题型:
【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′ ,如图①所示,∠BAB′ =θ, ,我们将这种变换记为[θ,n] .
(1)如图①,对△ABC作变换[60°,]得到△AB′C′ ,则:= ;直线BC与直线B′C′所夹的锐角为 度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、在同一直线上,且四边形ABB′C′为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆重新装修后,准备在大厅的主楼梯上铺设某种红地毯,已知这种地毯售价为30元/m2 , 主楼梯宽2m,其侧面如图所示.
(1)求这个地毯的长是多少?
(2)求这个地毯的面积是多少平方米?
(3)求购买地毯至少需要多少元钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB、CD与x轴平行,边AD、BC与x轴平行,点B、C的坐标分别为B(a,1),C(a,c),且a、c满足关系式.c=++3
(1)求B、C、D三点的坐标;
(2)怎样平移,才能使A点与原点重合?平移后点B、C、D的对应分别为B1C1D1 , 求四边形OB1C1D1的面积;
(3)平移后在x轴上是否存在点P,连接PD,使S△COP=S四边形OBCD?若存在这样的点P,求出点P的坐标;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.
(1)求此双曲线的解析式;
(2)作直线AC交y轴于点E,连结DE,求△ CDE的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com