3£®ÔÚÃÀ»¯Ð£Ô°µÄ»î¶¯ÖУ¬Ä³ÊýѧÐËȤС×éµÄͬѧÀûÓó¤Îª16mµÄÀé°Ê£¬½èÖúÁ½Ã滥Ïà´¹Ö±µÄǽÌåa¡¢bΧһ¸ö¾ØÐλ¨ÆÔABCD£¨Ç½Ìåa£¬bµÄ×î´ó¿ÉÓó¤¶ÈΪ14m¡¢9m£©£¬É軨ÆÔAB±ßµÄ³¤Îªx m£¬Ãæ»ýΪS m2
£¨1£©ÇóSÓëxÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ð´³ö×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨2£©ÈôΧ³ÉµÄ¾ØÐλ¨ÆÔÃæ»ýΪ39m2£¬Çó³ö´Ëʱ»¨ÆԵij¤Óë¿í£»
£¨3£©ÄÜΧ³ÉÃæ»ý±È39m2¸ü´óµÄ¾ØÐλ¨ÆÔÂð£¿Èç¹ûÄÜ£¬ÇëÇó³ö×î´óÃæ»ý£¬²¢ËµÃ÷Χ·¨£»Èç¹û²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâµÃ³ö³¤¡Á¿í=Ãæ»ý£¬½ø¶øµÃ³öSÓëxÖ®¼äµÄº¯Êý¹Øϵʽ£»
£¨2£©¸ù¾ÝÌâÒâµÃ³ö³¤¡Á¿í=39£¬½â·½³Ì¼´¿É£»
£¨2£©¸ù¾Ý£¨1£©Öк¯Êý±í´ïʽ£¬ÔÙÀûÓöþ´Îº¯ÊýÔö¼õÐÔÇóµÃ×îÖµ£®

½â´ð ½â£º£¨1£©É軨ÆÔAB±ßµÄ³¤Îªx m£¬Ãæ»ýΪS m2
S=x£¨16-x£©=-x2+16x£¨7¡Üx¡Ü14£©£»
£¨2£©¸ù¾ÝÌâÒâÁз½³ÌµÃ£º
-x2+16x=39
½âµÃ£ºx1=13£¬x2=3£¨ÉáÈ¥£©
µ±x=13ʱ£¬16-x=3£¬
¡àΧ³ÉµÄ¾ØÐλ¨ÆÔÃæ»ýΪ39m2£¬´Ëʱ»¨ÆԵij¤Óë¿í·Ö±ðΪ13m¡¢3m£»
£¨3£©S=-x2+16x=-£¨x-8£©2+64
µ±ABµÄ³¤Îª8mʱ£¬Î§³ÉµÄ¾ØÐλ¨ÆÔÃæ»ý×î´ó£¬×î´óÃæ»ýÊÇ64m2£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄÓ¦ÓÃÒÔ¼°¶þ´Îº¯Êý×îÖµÇ󷨣¬µÃ³öSÓëxµÄº¯Êý¹ØϵʽÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¶ÔÓÚ·½³Ì×é$\left\{\begin{array}{l}x+y=4¡­£¨1£©\\ x-y=2¡­£¨2£©\end{array}\right.$£¬ÔÚ$\left\{\begin{array}{l}x=-1\\ y=5\end{array}\right.$£¬$\left\{\begin{array}{l}x=3\\ y=1\end{array}\right.$£¬$\left\{\begin{array}{l}x=6\\ y=4\end{array}\right.$Õâ3¶ÔÊýÖµÖУ¬$\left\{\begin{array}{l}x=-1\\ y=5\end{array}\right.$£¬$\left\{\begin{array}{l}x=3\\ y=1\end{array}\right.$ÊÇ·½³Ì¢ÙµÄ½â£®$\left\{\begin{array}{l}x=3\\ y=1\end{array}\right.$£¬$\left\{\begin{array}{l}x=6\\ y=4\end{array}\right.$ÊÇ·½³Ì¢ÚµÄ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ð¡Ã÷ÔÚµçÊÓËþÉϸ߶ÈΪ450Ã×µÄA´¦£¬²âµÃ´óÂ¥CDÂ¥¶¥DµÄ¸©½Ç30¡ã£¬Ð¡½ÜÔÚ´ó¥¥µ×C´¦²âµÃA´¦µÄÑö½ÇΪ45¡ã£®
£¨1£©Çó´óÂ¥ÓëµçÊÓËþÖ®¼äµÄ¾àÀëBC£»
£¨2£©Çó´óÂ¥µÄ¸ß¶ÈCD£¨¾«È·µ½1Ã×£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC£¬AB=AD=CD£¬BD=BC£¬Çó¡ÏABCµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®¹Û²ìÏÂÁи÷×éͼÐΣ¬ÆäÖгÉÖá¶Ô³ÆµÄͼÐÎÊÇ¢Ú£®£¨ÌîдÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ä³µØÇøÓÐÒ»ÖÖÖ²ÎïÔÚÆøÎÂ0¡æÒÔϳÖÐøʱ¼ä³¬¹ý2.5Сʱ£¬¼´Ôâ˪¶³ÔÖº¦£¬Ðè²ÉÈ¡Ô¤·À´ëÊ©£¬ÈçͼÊÇÆøÏǫ́ijÌì·¢²¼µÄ¸ÃµØÇøÆøÏóÐÅÏ¢£¬Ô¤±¨ÁË´ÎÈÕ0ʱÖÁ5ʱÆøÎÂËæʱ¼ä±ä»¯Çé¿ö£¬ÆøÎÂÊÇʱ¼äµÄ¶þ´Îº¯Êý£¬ËüµÄͼÏó¾­¹ýµã£¨0£¬2£©£¬Æ䶥µã×ø±êÊÇ£¨$\frac{5}{2}$£¬-$\frac{9}{8}$£©£¬ÇëÄã¸ù¾ÝͼÖÐÐÅÏ¢ÅжÏÕâÖÖÖ²Îï´ÎÈÕÊÇ·ñÐèÒª²ÉÈ¡·À¶³´ëÊ©£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÓÃÆå×Ó°´ÏÂÁз½Ê½°ÚͼÐΣ¬ÒÀÕմ˹æÂÉ£¬µÚn¸öͼÐαȵڣ¨n-1£©¸öͼÐζࣨ¡¡¡¡£©
A£®£¨n-1£©Ã¶Æå×ÓB£®nöÆå×ÓC£®£¨n+1£©Ã¶Æå×ÓD£®£¨3n-2£©Ã¶Æå×Ó

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑ֪ʵÊýa£¬b£¬cÔÚÊýÖáÉÏËù¶ÔÓ¦µÄµãÈçͼËùʾ£¬Íê³ÉÏÂÁи÷Ì⣮
£¨1£©ÏÂÁÐʽ×ÓÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a2£¼b2 £»B.$\frac{a}{b}$£¼0£»C£®|a|£¼|b|£»D£®a3£¼b3
£¨2£©ÏÂÁв»µÈʽ´íÎóµÄÊÇ£¨¡¡¡¡£©
A.$\frac{c}{a}£¾\frac{c}{b}$£»B£®ac£¾bc£» C£®a2£¾b2 £»D£®a+c£¼b+c
£¨3£©£¨a-b£©cΪ£¨¡¡¡¡£©
A£®¸ºÊý£»B£®ÕýÊý£»C£®·Ç¸ºÊý£»D£®£¨a-b£©cµÄ·ûºÅ²»ÄÜÈ·¶¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬Ä¾½³Ð¡ÍõÏë´Ó¶Ô½ÇÏß³¤Îª80cmµÄÕý·½ÐÎľ°åÉϽØÏÂÒ»¸ö×î´óµÄ¶´£¬ÊÔÇóÕâ¸öÔ²µÄÖ±¾¶ÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸