精英家教网 > 初中数学 > 题目详情

【题目】抛物线y=ax2+bx+ca≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣30)和(﹣20)之间,其部分图象如图,则下列结论:①4ac﹣b202a﹣b=0a+b+c0④点Mx1y1)、Nx2y2)在抛物线上,若x1x2﹣1,则y1y2abc0.其中正确结论的个数是(  )

A. 5 B. 4 C. 3 D. 2

【答案】B

【解析】①∵抛物线与x轴有两个交点,

∴△=b2﹣4ac>0,

∴4ac﹣b2<0,结论①正确;

②∵抛物线的对称轴为直线x=﹣1,

∴﹣=﹣1,

∴b=2a,即2a﹣b=0,结论②正确;

③∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,

∴当x=1与x=﹣3的值相等,即当x=1时y<0,

∴a+b+c<0,结论③正确;

④∵当x<﹣1时,y随x的增大而增大,x1<x2<﹣1,

∴y1<y2,结论④错误;

⑤∵抛物线开口向下,对称轴为直线x=﹣1,与y轴交于正半轴,

∴a<0,b=2a<0,c>0,

∴abc>0,结论⑤正确,

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28.

(1)求魔方的进价?

(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每380元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ABC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.

(1)证明四边形ADCF是菱形;

(2)若AC=4,AB=5,求菱形ADCF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,20173月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.

(1)求该快递公司投递快递总件数的月平均增长率

(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成20176月份的快递投递任务?如果不能,请问至少需要增加几名业务员?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1ab为有理数,且a+bab在数轴上如图所示:

①判断:a   0b   0a   b(用”“”“填空).

②若x|2a+b|3|b||32a|+2|b1|,求(2x2-+3x)﹣4xx2+)的值;

2)若c为有理数,,且abbc+ac=﹣99,求(3a4b+2c2+abc的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y1=的图象与一次函数y2=的图象交于点A,B,点B的横坐标实数4,点P(1,m)在反比例函数y1=的图象上.

(1)求反比例函数的表达式;

(2)观察图象回答:当x为何范围时,y1>y2

(3)求PAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新规定这样一种运算法则:a△b=,如2△3=2×3=46=2

利用运算法则解决下列问题:

11△2= ,(-11△(-1)] =

2)若2△x=3,求x的值.

3)若(-2△x=2+x,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学课上,老师提出如下问题:如何使用尺规完成“过直线l外一点P作已知直线l的平行线”.

小明的作法如下:

①在直线l上取一点A,以点A为圆心,AP长为半径作弧,交直线l于点B

②分别以PB为圆心,以AP长为半径作弧,两弧相交于点Q(与点A不重合);

③作直线PQ.所以直线PQ就是所求作的直线.根据小明的作图过程,

1)使用直尺和圆规,补全图形;(保留作图痕迹)

2)完成下面的证明.

证明:∵ABAP      

∴四边形ABQP是菱形(   )(填推理的依据).

PQl

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图RtABE中,ABAEAB为直径作⊙O,交BEC,弦CDABFAE上一点,连FC,则FC=FE

1)求证:CF是⊙O的切线;

2)已知点P为⊙O上一点,且tanAPD=,连CP,求sinCPD的值.

查看答案和解析>>

同步练习册答案