【题目】如图,△DBC 中,DB=DC,A 为△DBC 外一点,且∠BAC=∠BDC,DE AC 于 E,
(1)求证:AD 平分△ABC 的外角;
(2)求的值.
【答案】(1)见解析;(2)2
【解析】
(1)连接AD,作DH垂直于BA的延长线与点H,AC,BD交于点O,证明△ DHB≌△ DEC得DH=DE即可说明AD平分△ABC的外角;(2)由第一问知EC=HB,HA=AE,转换得到AC-AB=2AE即可求出.
(1)连接AD,作DH垂直于BA的延长线与点H,AC,BD交于点O,
∵DH⊥ BH,DE⊥ AC,
∴∠ DHA=∠ DEC=90°,
∵∠BAC=∠BDC,∠AOB=∠DOC,
∴∠ ABO=∠ ACD,
在△ DHB和△DEC中
∴△ DHB≌△ DEC(AAS),
∴ DH=DE,
∴AD平分∠ HAE,则AD 平分△ ABC 的外角;
(2)由(1)知EC=HB,HA=AE,
AB=HB-HA=EC-AE,
∴AC-AB=AC-(EC-AE)=AC-EC+AE=2AE
∴
科目:初中数学 来源: 题型:
【题目】已知,数轴上两点所对应的数分别是和.
(1)填空: , ;
(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;
(3)点以每秒2个单位的速度从点出发向左运动,同时点以每秒3个单位的速度从点出发向右运动,点以每秒4个单位的速度从原点点出发向左运动.若为的中点,当时,求两点之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=(k≠0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB的面积为4.
(Ⅰ)求k和m的值;
(Ⅱ)设C(x,y)是该反比例函数图象上一点,当1≤x≤4时,求函数值y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB=.
(1)当t=1时,求抛物线的表达式;
(2)试用含t的代数式表示点C的坐标;
(3)如果点C在这条抛物线的对称轴上,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.
(1)求y1的解析式;
(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F. ①求△COF的面积;
②在x轴上是否存在点P,使S△OCP=S△COF?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(4、0)、B(3,4),C(0,2).
(1)求;(求四边形ABCO的面积)
(2)在x轴上是否存在一点,使,(三角形APB的面积),若存在,请直接写出点P坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为______度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com