如图,在平面直角坐标系中,直线与轴交于点A,与y轴交于点C. 抛物线经过A、C两点,且与x轴交于另一点B(点B在点A右侧).
1.求抛物线的解析式及点B坐标;
2.若点M是线段BC上一动点,过点M的直线EF平行y轴交轴于点F,交抛物线于点E.求ME长的最大值;
3.试探究当ME取最大值时,在抛物线x轴下方是否存在点P,使以M、F、B、P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
1.抛物线的解析式是:
2.ME的最大值=
3.不存在.
解析:.解:(1) 当y=0时, ∴A(-1, 0)
当x=0时, ∴ C(0,-3)
∴ ∴
抛物线的解析式是:
当y=0时,
解得: x1=-1 x2=3 ∴ B(3, 0)
(2)由(1)知 B(3, 0) , C(0,-3) 直线BC的解析式是:
设M(x,x-3)(0≤x≤3),则E(x,x2-2x-3)
∴ME=(x-3)-( x2-2x-3)=-x2+3x =
∴当 时,ME的最大值=
(3)答:不存在.
由(2)知 ME 取最大值时ME= ,E,M
∴MF=,BF=OB-OF=.
设在抛物线x轴下方存在点P,使以P、M、F、B为顶点的四边形是平行四边形,
则BP∥MF,BF∥PM. ∴P1 或 P2
当P1 时,由(1)知
∴P1不在抛物线上.
当P2 时,由(1)知
∴P1不在抛物线上.
综上所述:抛物线x轴下方不存在点P,使以P、M、F、B为顶点的四边形是平行四边形.
科目:初中数学 来源: 题型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com