精英家教网 > 初中数学 > 题目详情
如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.精英家教网
(1)求证:AC=BD;
(2)若图中阴影部分的面积是
34
πcm2,OA=2cm,求OC的长.
分析:(1)求证:AC=BD,则需求证△AOC≌△BOD,利用已知条件证明即可.
(2)从图中可以得S阴影就是大扇形减小扇形形所得的弓形的面积,根据扇形的面积公式计算即可.
解答:(1)证明:∵∠AOB=∠COD=90°,
∴∠AOC+∠AOD=∠BOD+∠AOD;
∴∠AOC=∠BOD;
在△AOC和△BOD中,
OA=OB
∠AOC=∠BOD
CO=DO

∴△AOC≌△BOD(SAS);
∴AC=BD.

(2)解:根据题意得:S阴影=
90π•OA2
360
-
90π•OC2
360
=
90π•(OA2-OC2)
360

3
4
π=
90π(22-OC2)
360

解得:OC=1(cm).
点评:本题考查了全等三角形的判定和性质、扇形面积的计算方法等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,圆心角都是90°的扇形OAB与扇形OCD如图那样叠放在一起,连接AC、BD.求证:△AOC≌△BOD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.
(1)求证:△AOC≌△BOD;
(2)若OA=3cm,OC=1cm,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC、BD.
(1)AC与BD相等吗?为什么?
(2)若OA=2cm,OC=1cm,求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案