精英家教网 > 初中数学 > 题目详情

【题目】某篮球队在一次联赛中共进行了10场比赛,已知这10场比赛的平均得分为48分,且前9场比赛的得分依次为:575145514446454248

1)求第10场比赛的得分;

2)直接写出这10场比赛的中位数,众数和方差.

方差公式:s2[x12+x22++xn2]

【答案】(1)51(2)18.2

【解析】

1)根据平均数的定义先求出总数,再分别减去前9个数即可;

2)根据中位数、众数的定义分别求出最中间两个数的平均数和出现次数最多数,再根据方差的计算公式代入计算即可.

1)∵10场比赛的平均得分为48分,

∴第10场比赛的得分=48×1057514551444645424851(分),

2)把这10个数从小到大排列为;42444545464851515157

最中间两个数的平均数是(46+48÷247

则这10场比赛得分的中位数为47分,

51都出现了最多次数3次,所以众数为51

方差= [42482+44482+2×45482+46482+48482+3×51482+57482]18.2.

故答案为:(151218.2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.

(1)求一次函数与反比例函数的解析式;

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】几何体的三视图相互关联.已知直三棱柱的三视图如图,在△PMN中,∠MPN=90°,PN=4,sin∠PMN=

(1)求BCFG的长;

(2)若主视图与左视图两矩形相似,求AB的长;

(3)在(2)的情况下,求直三棱柱的表面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E.

(1)判断直线CD与⊙O的位置关系,并说明理由;

(2)若BE=4,DE=8,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,若点A坐标为(x1y1),点B坐标为(x2y2),作ADx轴于点DBEy轴于点EADBE相交于点C,则有AC|y1y2|BC|x1x2|,所以,AB两点间的距离为AB

根据结论,若MN两点坐标分别为(14)、(51),则MN   (直接写出结果).

2)如图2,直线ykx+1y轴相交于点D,与抛物线yx2相交于AB两点,A点坐标为(4a),过点Ay轴的垂线交y轴于点CEAC中点,点P是第一象限内直线AB下方抛物线上一动点,连接PEPDED

①a   k   AD   (直接写出结果).

若△DEP是以DE为底的等腰三角形,求点P的横坐标;

求四边形CDPE的周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点FFGCD,连接EFDG,下列结论中正确的有(  )

①∠ADG=AFG②四边形DEFG是菱形;③DG2=AEEG④若AB=4AD=5,则CE=1

A. ①②③④ B. ①②③ C. ①③④ D. ①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于AB两点,与双曲线y2=x>0)交于点C,过点CCDx轴,垂足为D,且OA=AD,则以下结论:①当x>0时,y1x的增大而增大,y2x的增大而减小;②;③当0<x<2时,y1y2;④如图,当x=4时,EF=4.其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是(  )

A. 1小时 B. 2小时 C. 3小时 D. 4小时

查看答案和解析>>

同步练习册答案