【题目】如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)
(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)
科目:初中数学 来源: 题型:
【题目】如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=.
(1)求反比例函数的表达式;
(2)若点P是y轴上一动点,求PA+PB的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:
(1)求y与x之间的函数解析式;
(2)求这一天销售羊肚菌获得的利润W的最大值;
(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请从以下(A)、(B)两题中任选一个解答.
(A)已知:抛物线交轴于点和点,交轴于点.
(1)抛物线的解析式为_____________;
(2)点为第一象限抛物线上一点,是否存在使面积最大的点?若不存在,请说明理由,若存在,求出点的坐标;
(3)点的坐标为,连接将线段绕平面内某一点旋转得线段(点分别与点对应),使点都在抛物线上,请直接写点的坐标.
(B)如图,已知抛物线与轴从左至右交于两点,与轴交于点.
(1)抛物线的解析式为___________:
(2)是第一象限内抛物线上的一个动点(与点不重合),过点作轴于点交直线于点,连接,直线能否把分成面积之比为的两部分?若能,请求出点的坐标;若不能,请说明理由;
(3)若为抛物线对称轴上一动点,为直角三角形,请直接写出点的坐标.
我选做的是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是BC边上的一个动点,沿着AE翻折矩形,使点B落在点F处若AB=3,BC=AB,解答下列问题:
(1)在点E从点B运动到点C的过程中,求点F运动的路径长;
(2)当点E是BC的中点时,试判断FC与AE的位置关系,并说明你的理由;
(3)当点F在矩形ABCD内部且DF=CD时,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为抛物线的部分图象,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),下列结论:
①4ac<b2
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中正确的结论是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数在第二象限的图象经过点B,且,则k的值 ( )
A.4B.8C.-4D.-8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com