精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,经过点A的双曲线y=(x0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,AOB=OBA=45°,则k的值为_____

【答案】

【解析】分析:过AAMy轴于M,过BBD选择x轴于D,直线BDAM交于点N,则OD=MN,DN=OM,AMO=BNA=90°,由等腰三角形的判定与性质得出OA=BA,OAB=90°,证出∠AOM=BAN,由AAS证明AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)(k﹣1)=k,解方程即可.

详解:如图所示,过AAMy轴于M,过BBD选择x轴于D,直线BDAM交于点N,

OD=MN,DN=OM,AMO=BNA=90°,

∴∠AOM+OAM=90°,

∵∠AOB=OBA=45°,

OA=BA,OAB=90°,

∴∠OAM+BAN=90°,

∴∠AOM=BAN,

∴△AOM≌△BAN,

AM=BN=1,OM=AN=k,

OD=1+k,BD=OM﹣BN=k﹣1

B(1+k,k﹣1),

∵双曲线y=(x>0)经过点B,

(1+k)(k﹣1)=k,

整理得:k2﹣k﹣1=0,

解得:k=(负值已舍去),

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】8分)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.

1)求购买每个笔记本和钢笔分别为多少元?

2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买xx0)支钢笔需要花y元,请你求出yx的函数关系式;

3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴交于AB两点,与y轴交于点C,已知A﹣10),C03

1)求该抛物线的表达式;

2)求BC的解析式;

3)点M是对称轴右侧点B左侧的抛物线上一个动点,当点M运动到什么位置时,BCM的面积最大?求BCM面积的最大值及此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】选择适当的方法解下列方程:

(1);(2)

(3);(4).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级开展征文活动,征文主题只能从爱国”“敬业”“诚信”“友善四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

(1)求共抽取了多少名学生的征文;

(2)将上面的条形统计图补充完整;

(3)在扇形统计图中,选择爱国主题所对应的圆心角是多少;

(4)如果该校九年级共有1200名学生,请估计选择以友善为主题的九年级学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,ABCD,D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.

(1)用含x的代数式表示线段CF的长;

(2)如果把CAE的周长记作CCAEBAF的周长记作CBAF,设=y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是时,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明、小华在一栋电梯楼前感慨楼房真高.小明说:这楼起码20层!小华却不以为然:“20层?我看没有,数数就知道了!小明说:有本事,你不用数也能明白!小华想了想说:没问题!让我们来量一量吧!小明、小华在楼体两侧各选AB两点,测量数据如图,其中矩形CDEF表示楼体,AB=150CD=10A=30°B=45°,(ACDB四点在同一直线上)问:

1)楼高多少米?

2)若每层楼按3计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73≈1.41≈2.24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的不等式组有且只有四个整数解,又关于x的分式方程﹣2=有正数解,则满足条件的整数k的和为(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步练习册答案