精英家教网 > 初中数学 > 题目详情
如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,求证:BD=CE.
分析:根据等边三角形的性质得到AE=AB,AD=AC,∠EAB=∠DAC=60°,则∠BAD=∠EAC,再根据三角形全等的判定方法可证得△ACE≌△ADB,然后根据全等的性质即可得到结论.
解答:证明:∵△ABE和△ACD是等边三角形,
∴AE=AB,AD=AC,∠EAB=∠DAC=60°,
∴∠EAB+∠BAC=∠DAC+∠CAB,
∴∠BAD=∠EAC,
在△ACE和△ADB中
AE=AB
∠EAC=∠DAB
AC=AD

∴△ACE≌△ADB(SAS),
∴BD=CE.
点评:本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角也相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等边三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,分别以△ABC的三边为边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题:
(1)说明四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
(3)当△ABC满足什么条件时,四边形ADEF是菱形?
(4)当△ABC满足什么条件时,四边形ADEF是正方形?
(5)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在?
(第(2)(3)(4)(5)题不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,分别以△ABC的边AB、AC为边向外作等边三角形ABD和等边三角形ACE,CD与BE相交于点O,判断∠AOD与∠AOE的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O,连接OA.
(1)求证:BE=DC;
(2)求∠BOD的度数;
(3)求证:OA平分∠DOE.

查看答案和解析>>

同步练习册答案