精英家教网 > 初中数学 > 题目详情
17、小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大,最大面积是多少?
分析:(1)已知周长为60米,一边长为x,则另一边长为30-x.
(2)用配方法化简函数解析式,求出s的最大值.
解答:解:(1)S=x(30-x)(2分)
自变量x的取值范围为:
0<x<30.(1分)
(2)S=x(30-x)
=-(x-15)2+225,(2分)
∴当x=15时,S有最大值为225平方米.
即当x是15时,矩形场地面积S最大,最大面积是225平方米.(1分)
点评:本题考查的是二次函数的应用,难度属一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单

位:平方米)随矩形一边长x(单位:米)的变化而变化.

(1)求S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当x是多少时,矩形场地面积S最大?最大面积是多少?

 

查看答案和解析>>

科目:初中数学 来源: 题型:

小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单

位:平方米)随矩形一边长x(单位:米)的变化而变化.

(1)求S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当x是多少时,矩形场地面积S最大?最大面积是多少?

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年九年级第二学期第一阶段考试数学卷(带解析) 题型:解答题

小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单
位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(23):2.3 二次函数的应用(解析版) 题型:解答题

小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大,最大面积是多少?

查看答案和解析>>

同步练习册答案