19£®É躯Êýy1=£¨x-k£©2+kºÍy2=£¨x+k£©2-kµÄͼÏóÏཻÓÚµãA£¬º¯Êýy1£¬y2µÄͼÏóµÄ¶¥µã·Ö±ðΪBºÍC£®
£¨1£©»­³öµ±k=0£¬1ʱ£¬º¯Êýy1£¬y2ÔÚÖ±½Ç×ø±êϵÖÐͼÏó£»
£¨2£©¹Û²ì£¨1£©ÖÐËù»­º¯ÊýͼÏóµÄ¶¥µãλÖ㬷¢ÏÖËüÃǾù·Ö²¼ÔÚij¸öº¯ÊýµÄͼÏóÉÏ£¬Çëд³öÕâ¸öº¯ÊýµÄ½âÎöʽ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÉèA£¨x£¬y£©£¬ÇóÖ¤£ºxÊÇÓëkÎ޹صij£Êý£¬²¢ÇóyµÄ×îСֵ£»
£¨4£©ÉèÖ±Ïßl£ºy=ax+1µÄͼÏó·Ö±ðÓ뺯Êýy1£¬y2µÄͼÏó½»ÓÚA£¬BºÍC£¬D£®ÈôAB=CD£¬Ð´³öËùÓÐʵÊýa£®£¨Ö±½Óд³öaµÄÖµ¼´¿É£¬²»ÒªÇóдÀíÓÉ£©

·ÖÎö £¨1£©k=0ʱ£¬º¯Êýy1=y2=x2£»k=1ʱ£¬º¯Êýy1=£¨x-1£©2+1£¬y2=£¨x+1£©2-1£¬¸ù¾Ý¶þ´Îº¯ÊýµÄͼÏóÓëÐÔÖʷֱ𻭳öËüÃǵÄͼÏó¼´¿É£»
£¨2£©¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊ·Ö±ðÇó³ö£¨1£©ÖÐËù»­º¯ÊýͼÏóµÄ¶¥µã×ø±ê£¬½áºÏº¯ÊýͼÏ󣬷¢ÏÖ¶¥µãÔÚÖ±Ïßy=xµÄͼÏóÉÏ£»
£¨3£©½«y1=£¨x-k£©2+k´úÈëy2=£¨x+k£©2-k£¬Çó³öxµÄֵΪ³£Êý£¬¼´¿ÉÖ¤Ã÷xÊÇÓëkÎ޹صij£Êý£¬ÔÙÇó³öyµÄ×îСֵ£»
£¨4£©ÏȽ«y=ax+1´úÈëy1=£¨x-k£©2+k£¬ÕûÀíµÃµ½x2-£¨2k+a£©x+k2+k-1=0£¬ÓɸùÓëϵÊýµÄ¹ØϵµÃ³öAB2=£¨1+a2£©£¨4ka+a2-4k+4£©£¬Í¬ÀíµÃµ½CD2=£¨1+a2£©£¨-4ka+a2+4k+4£©£¬¸ù¾ÝAB=CDµÃ³ö·½³Ì£¨1+a2£©£¨4ka+a2-4k+4£©=£¨1+a2£©£¨-4ka+a2+4k+4£©£¬½â·½³Ì¼´¿ÉÇó³öʵÊýaµÄÖµ£®

½â´ð ½â£º£¨1£©ÈçͼËùʾ£»


£¨2£©º¯Êýy1=y2=x2µÄ¶¥µãΪ£¨0£¬0£©£¬
º¯Êýy1=£¨x-1£©2+1µÄ¶¥µãΪ£¨1£¬1£©£¬
º¯Êýy2=£¨x+1£©2-1µÄ¶¥µãΪ£¨-1£¬-1£©£¬
ËüÃǶ¼ÔÚÖ±Ïßy=xµÄͼÏóÉÏ£¬ÒòΪËüÃǵÄ×ø±ê¾ùÂú×ã½âÎöʽy=x£»

£¨3£©½«y1=£¨x-k£©2+k´úÈëy2=£¨x+k£©2-k£¬
µÃ£¨x-k£©2+k=£¨x+k£©2-k£¬
ÕûÀíµÃ4kx=2k£¬
¡ßº¯Êýy1=£¨x-k£©2+kºÍy2=£¨x+k£©2-kµÄͼÏóÏཻÓÚµãA£¬
¡àk¡Ù0£¬
½âµÃx=$\frac{1}{2}$£¬
¡àxÊÇÓëkÎ޹صij£Êý£»
´Ëʱy=£¨$\frac{1}{2}$+k£©2-k=k2+$\frac{1}{4}$¡Ý$\frac{1}{4}$£¬¼´yµÄ×îСֵΪ$\frac{1}{4}$£»

£¨4£©½«y=ax+1´úÈëy1=£¨x-k£©2+k£¬
µÃax+1=£¨x-k£©2+k£¬
ÕûÀíµÃx2-£¨2k+a£©x+k2+k-1=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòy1=ax1+1£¬y2=ax2+1£¬
ËùÒÔAB2=£¨x2-x1£©2+£¨y2-y1£©2=£¨1+a2£©£¨x2-x1£©2£¬
¡ß£¨x2-x1£©2=£¨x2+x1£©2-4x2•x1=£¨2k+a£©2-4£¨k2+k-1£©=4ka+a2-4k+4£¬
¡àAB2=£¨1+a2£©£¨4ka+a2-4k+4£©£¬
ͬÀíµÃµ½CD2=£¨1+a2£©£¨-4ka+a2+4k+4£©£¬
¡ßAB=CD£¬
¡à£¨1+a2£©£¨4ka+a2-4k+4£©=£¨1+a2£©£¨-4ka+a2+4k+4£©£¬
¡à4ka+a2-4k+4=-4ka+a2+4k+4£¬
¡à8ka=8k£¬
¡ßk¡Ù0£¬
¡àa=1£®

µãÆÀ ±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓжþ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬Á½º¯Êý½»µã×ø±êµÄÇ󷨣¬¶þ´Îº¯ÊýÓëÒ»Ôª¶þ´Î·½³ÌµÄ¹Øϵ£®ÕýÈ·¼ÆËã³öAB2ÓëCD2Êǽâ¾öµÚ£¨4£©ÎʵĹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®½â·½³Ì×飺$\left\{\begin{array}{l}{x+y-z=0}\\{x+2y-z=3}\\{2x-3y+2z=5}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ1£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬ÒÔABΪֱ¾¶µÄ¡ÑO·Ö±ð½»AC£¬BCÓÚµãD£¬E£®µãFÔÚACµÄÑÓ³¤ÏßÉÏ£¬ÇÒ¡ÏCAB=2¡ÏCBF£®
£¨1£©ÇóÖ¤£ºBFÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©ÈôAB=6£¬BF=8£¬ÇóADµÄ³¤£»
£¨3£©Èçͼ2£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬Çótan¡ÏCBFµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬AB=3£¬AC=4£¬BC=5£¬½«¡÷ABCÑØÖ±ÏßBCÏòÓÒƽÒÆ2¸öµ¥Î»µÃµ½¡÷DEF£¬Á¬½ÓAD£¬ÔòÏÂÁнáÂÛ£º
¢ÙAC¡ÎDF£¬AC=DF
¢ÚED¡ÍDF
¢ÛËıßÐÎABFDµÄÖܳ¤ÊÇ16
¢ÜµãBµ½Ï߶ÎDFµÄ¾àÀëÊÇ4.2
ÆäÖнáÂÛÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª±ß³¤ÎªaµÄÕý·½ÐεÄÃæ»ýΪ8£¬ÔòÏÂÁÐ˵·¨ÖУ¬´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®aÊÇÎÞÀíÊýB£®aÊÇ·½³Ìx2-8=0µÄ½â
C£®aÊÇ8µÄËãÊõƽ·½¸ùD£®aÂú×ã²»µÈʽ$\frac{2x-4}{3}£¾1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬¡ÏBAN=¡ÏCAD=90¡ã£¬¡ÏB=¡ÏACD£¬BN=CD£¬µãCÔÚBNÉÏ£®

£¨1£©µ±¡ÏANB=30¡ã£¨Èçͼ1£©Ê±£¬¡ÏDNBµÄ¶ÈÊýÊÇ90¡ã£®
£¨2£©µ±¡ÏANB¡Ù30¡ã£¨Èçͼ2£©Ê±£¬¡ÏDNBµÄ¶ÈÊýÓ루1£©ÖеĽá¹ûÏàͬÂð£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÈçͼËùʾ£¬ÕÛÏßABCÊÇÔÚijÊг˳ö×â³µÐ踶³µ·Ñy£¨Ôª£©ÓëÐгµÀï³Ìx£¨Ç§Ã×£©Ö®¼äµÄº¯Êý¹ØϵͼÏó£®ÈôijÈ˸¶·Ñ30.8Ôª£¬³ö×â³µÐÐÊ»Á˶àÉÙǧÃ×£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬AD¡ÍBCÓÚDµã£¬µãE¡¢FÊÇÏ߶ÎADÉϵÄÈýµÈ·Öµã£¬Á¬½ÓBE¡¢CE¡¢BF¡¢CF£¬Èô$\frac{BC}{AD}=\frac{2}{3}$£¬ÇÒBC=4a£®
£¨1£©ÇóËıßÐÎABECµÄÃæ»ý£»
£¨2£©Ð´³öÓë¡÷CEFÏàËƵ«²»È«µÈµÄÈý½ÇÐΣ¬²¢Ö¤Ã÷ÆäÖеÄÒ»¶Ô£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬Å×ÎïÏßy=ax2+x+cÓëxÖá½»ÓÚA£¬B£¨4£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£¨0£¬4£©£®
£¨1£©ÇóÅ×ÎïÏߵıí´ïʽ£»
£¨2£©Á¬½ÓAC£¬BC£¬Çótan¡ÏCAOµÄÖµ£»
£¨3£©¶¯µãEÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØA¡úB·½ÏòÔÈËÙÔ˶¯£¬¹ýµãE×÷EF¡ÎyÖᣬÉèµãEÔ˶¯Ê±¼äΪt£¨0¡Üt¡Ü6£©Ã룬Ô˶¯¹ý³ÌÖÐÖ±ÏßEFÔÚ¡÷ABCÖÐËùɨ¹ýµÄÃæ»ýΪS£¬ÇóSÓëtµÄº¯Êý¹Øϵʽ£»
£¨4£©ÈôµãM£¬NÔÚÏ߶ÎBCÉÏ£¬µãQ£¬PÔÚµÚÒ»ÏóÏÞµÄÅ×ÎïÏßÉÏ£¬ÇÒËıßÐÎMNQPÊÇÕý·½ÐΣ¬ÇóµãMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸