精英家教网 > 初中数学 > 题目详情
7.在△ABC中,点D、E、F分别是BC、AB、AC边的中点.求证:△BED≌△DFC.

分析 先根据三角形中位线定理得出∠EDB=∠C,∠B=∠FDC,再由F是AC边的中点得出FC=$\frac{1}{2}$AC,
故可得出DE=FC,利用AAS定理即可得出结论.

解答 证明:∵点D、E分别是BC、AB的中点,
∴ED∥AC,ED=$\frac{1}{2}$AC,
∴∠EDB=∠C.
又∵F是AC边的中点,
∴FC=$\frac{1}{2}$AC,
∴DE=FC,
同理可得,∠B=∠FDC,
在△EBD和△FDC中,
∵$\left\{\begin{array}{l}{∠B=∠FDC}\\{∠EDC=∠C}\\{ED=FC}\end{array}\right.$,
∴△BED≌△DFC(AAS).

点评 本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.
(1)求每辆大客车和每辆小客车的乘客座位数;
(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案.在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)20170-|-sin45°|cos45°+$\sqrt{(-3)^{2}}$-(-$\frac{1}{4}$)-1
(2)$\left\{\begin{array}{l}{\frac{2(x+y)}{3}-\frac{x+y}{4}=-\frac{1}{12}}\\{3(x+y)-2(x-y)=3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.把4x2-16因式分解的结果是4(x+2)(x-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,正方形ABCD的边长为6,把一个含30°的直角三角形BEF放在正方形上,其中∠FBE=30°,∠BEF=90°,BE=BC,绕B点转动△FBE,在旋转过程中,
(1)如图1,当F点落在边AD上时,求∠EDC的度数;
(2)如图2,设EF与边AD交于点M,FE的延长线交DC于G,当AM=3时,求EG的长;
(3)如图3,设EF与边AD交于点N,当tan∠ECD=$\frac{1}{2}$时,求S△NED

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下面调查中,适合采用普查的是(  )
A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状
C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,点M、N在?ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,-4),B(3,-3),C(1,-1).
(1)将△ABC先向上平移5个单位,再向左平移3个单位,画出平移后得到的△A1B1C1
(2)写出△A1B1C1各顶点的坐标;
(3)若△ABC内有一点P(a,b),请写出平移后得到的对应点P1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某班开展勤俭节约的活动,对每个同学的一天的消费情况进行调查,得到统计图如图所示:

(1)求该班的总人数;
(2)将条形图补充完整,并写出消费金额的中位数;
(3)该班这一天平均每人消费多少元?

查看答案和解析>>

同步练习册答案