精英家教网 > 初中数学 > 题目详情
2.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.
(1)求抛物线的解析式;
(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;
(3)在抛物线对称轴上是否存在点M使|MA-MC|最大?若存在请求出点M的坐标,若不存在请说明理由.

分析 (1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;
(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;
(3)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA-MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.

解答 解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),
∴$\left\{\begin{array}{l}{9+3b+c=0}\\{1+b+c=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{b=-4}\\{c=3}\end{array}\right.$,
∴抛物线解析式为y=x2-4x+3;

(2)令x=0,则y=3,
∴点C(0,3),
则直线AC的解析式为y=-x+3,
设点P(x,x2-4x+3),
∵PD∥y轴,
∴点D(x,-x+3),
∴PD=(-x+3)-(x2-4x+3)=-x2+3x=-(x-$\frac{3}{2}$)2+$\frac{9}{4}$,
∵a=-1<0,
∴当x=$\frac{3}{2}$时,线段PD的长度有最大值$\frac{9}{4}$;
(3)由抛物线的对称性,对称轴垂直平分AB,
∴MA=MB,
由三角形的三边关系,|MA-MC|<BC,
∴当M、B、C三点共线时,|MA-MC|最大,为BC的长度,
设直线BC的解析式为y=kx+b(k≠0),
则$\left\{\begin{array}{l}{k+b=0}\\{b=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-3}\\{b=3}\end{array}\right.$,
∴直线BC的解析式为y=-3x+3,
∵抛物线y=x2-4x+3的对称轴为直线x=2,
∴当x=2时,y=-3×2+3=-3,
∴点M(2,-3),
即,抛物线对称轴上存在点M(2,-3),使|MA-MC|最大.

点评 本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.已知:如图,在菱形ABCD中,∠BAD=44°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于(  )
A.112°B.114°C.116°D.118°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,关于y=-x2+bx+c的二次函数y=-x2+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,点E在x轴上.
(1)求抛物线的解析式及顶点D的坐标;
(2)在图中求一点G,使以G、A、E、C为顶点的四边形是平行四边形,请直接写出点G的坐标;
(3)在抛物线A、C两点之间有一点F,使△FAC的面积最大,求该点坐标;
(4)直线DE上是否存在点P到直线AD的距离与到轴的距离相等?若存在,请求出点P,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.不等式x+7<3x+1的解集是(  )
A.x<-3B.x>3C.x<-4D.x>4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.阅读材料,回答问题:

小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=$\sqrt{3}$,AB=c=2,那么$\frac{a}{sinA}$=$\frac{b}{sinB}$=2.
通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含
30°角的直角三角形中,存在着$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$.的关系.”
这个关系对于一般三角形还适用吗?为此他做了如下的探究:
(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.
请判断此时“$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$.”的关系是否成立?
(2)完成上述探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:
如图3,在锐角△ABC中,BC=a,AC=b,AB=c.
过点C作CD⊥AB于D.
∵在Rt△ADC和Rt△BDC中,∠ADC=∠BDC=90°,
∴sinA=$\frac{CD}{b}$,sinB=$\frac{CD}{a}$.
∴$\frac{a}{sinA}$=$\frac{ab}{CD}$,$\frac{b}{sinB}$=$\frac{ab}{CD}$.
∴$\frac{a}{sinA}$=$\frac{b}{sinB}$.
同理,过点A作AH⊥BC于H,可证$\frac{b}{sinB}$=$\frac{c}{sinC}$.
∴$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$..
请将上面的过程补充完整.
(3)如图4,在△ABC中,如果∠B=60°,∠C=45°,AB=2,那么AC=$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.
(1)补全条形统计图;
(2)求出“D”所在扇形的圆心角的度数;
(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?
注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”(100km≤R<150km),B表示“纯电动乘用车”(150km≤R<250km),C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,抛物线y=x2-mx-3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.
(1)用含m的代数式表示BE的长.
(2)当m=$\sqrt{3}$时,判断点D是否落在抛物线上,并说明理由.
(3)若AG∥y轴,交OB于点F,交BD于点G.
①若△DOE与△BGF的面积相等,求m的值.
②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,一个圆锥形漏斗的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是(  )
A.30cm2B.30πcm2C.60πcm2D.120cm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.4的平方根是(  )
A.2B.-2C.±$\sqrt{2}$D.±2

查看答案和解析>>

同步练习册答案