分析 (1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;
(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;
(3)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA-MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.
解答 解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),
∴$\left\{\begin{array}{l}{9+3b+c=0}\\{1+b+c=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{b=-4}\\{c=3}\end{array}\right.$,
∴抛物线解析式为y=x2-4x+3;
(2)令x=0,则y=3,
∴点C(0,3),
则直线AC的解析式为y=-x+3,
设点P(x,x2-4x+3),
∵PD∥y轴,
∴点D(x,-x+3),
∴PD=(-x+3)-(x2-4x+3)=-x2+3x=-(x-$\frac{3}{2}$)2+$\frac{9}{4}$,
∵a=-1<0,
∴当x=$\frac{3}{2}$时,线段PD的长度有最大值$\frac{9}{4}$;
(3)由抛物线的对称性,对称轴垂直平分AB,
∴MA=MB,
由三角形的三边关系,|MA-MC|<BC,
∴当M、B、C三点共线时,|MA-MC|最大,为BC的长度,
设直线BC的解析式为y=kx+b(k≠0),
则$\left\{\begin{array}{l}{k+b=0}\\{b=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-3}\\{b=3}\end{array}\right.$,
∴直线BC的解析式为y=-3x+3,
∵抛物线y=x2-4x+3的对称轴为直线x=2,
∴当x=2时,y=-3×2+3=-3,
∴点M(2,-3),
即,抛物线对称轴上存在点M(2,-3),使|MA-MC|最大.
点评 本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 112° | B. | 114° | C. | 116° | D. | 118° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 30cm2 | B. | 30πcm2 | C. | 60πcm2 | D. | 120cm2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com