精英家教网 > 初中数学 > 题目详情
精英家教网如图,?ABCD中,∠ADC与∠BCD的平分线分别交AB与F、E.
(1)判断DF与CE的位置关系,并说明理由;
(2)若AB=5cm,BC=3cm,求EF的长;
(3)在(2)中,若改变BC的长度,AB=5cm的长度不变.
①能否使E、F重合?若能,请直接写出BC的长度;若不能,请说明理由;
②能否使E、F成为AB的三等分点?若能,请直接写出BC的长度;若不能,请说明理由.
分析:(1)由于平行四边形邻角互补,又∠ADC与∠BCD的平分线分别交AB与F、E,所以∠ADC和∠BCD的一半相加为90°,即DF和DE垂直.
(2)由平行四边形的性质和平分线可知角之间的等量关系,因此BC=BE=3,AE=AF=3,所以EF=AF-AE=1;
(3)①由(2)得,BE=BC=AD=AF,即当E、F重合后E(F)就成为了AB的中点,所以此时BC=
1
2
AB=2.5;
②E、F成为AB的三等分点时,有两种情况,即E在F的左边和右边.但不论E和F位置如何,BC=BE是永远成立的.E在F左边时,由于AB=5,所以,AE=EF=FB=
5
3
,所以BE=BC=
10
3
;E在F右边时,AF=FE=EB=
5
3
,所以BE=BC=
5
3
解答:解:(1)在?ABCD中,∵∠ADC+∠BCD=180°,
∵DF、CE分别平分∠ADC和∠BCD,
∴∠FDC+∠ECD=90°,
∴DF⊥CE;

(2)∵AB∥CD,
∴∠DCE=∠BEC
又∵∠BCE=∠DCE,
∴∠BEC=∠BCE,
∴BE=BC=3,又AB=5,
∴AE=2.
同理AF=AD=3,
∴EF=AF-AE=1cm

(3)①2.5cm;
10
3
5
3
cm.
点评:本题考查的是利用平行四边形的性质来解决有关线段相等的证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,?ABCD中,O为AC、BD的中点,则图中全等的三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,?ABCD中,AB⊥AC,AB=1,BC=
5
,对角线AC,BD相交于O点,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F,下列说法不正确的是(  )
A、当旋转角为90°时,四边形ABEF一定为平行四边形
B、在旋转的过程中,线段AF与EC总相等
C、当旋转角为45°时,四边形BEDF一定为菱形
D、当旋转角为45°时,四边形ABEF一定为等腰梯形

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,?ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=
12
DC.  若△DEF的面积为2,则?ABCD的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,?ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.
求证:AB=AF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•浙江)如图,?ABCD中,对角线AC和BD交于点O,过O作OE∥BC交DC于点E,若OE=5cm,则AD的长为
10
10
cm.

查看答案和解析>>

同步练习册答案