精英家教网 > 初中数学 > 题目详情

已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.

(1)当点P在线段AB上时,求证:△APQ∽△ABC;

(2)当△PQB为等腰三角形时,求AP的长.

 

【答案】

(1)见解析;(2)AP的长为或6.

【解析】

试题分析:(1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△APQ∽△ABC.

(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.

(I)当点P在线段AB上时,如题图1所示.由三角形相似(△APQ∽△ABC)关系计算AP的长;

(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.

试题解析:

(1)证明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C.

在△APQ与△ABC中,∵∠APQ=∠C,∠A=∠A,

∴△APQ∽△ABC.

(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.

∵∠BPQ为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ.

(I)当点P在线段AB上时,如题图1所示,

由(1)可知,△APQ∽△ABC,

,即,解得:.

.

(II)当点P在线段AB的延长线上时,如题图2所示,

∵BP=BQ,∴∠BQP=∠P.

∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A.∴BQ=AB.

∴AB=BP,点B为线段AB中点.

∴AP=2AB=2×3=6.

综上所述,当△PQB为等腰三角形时,AP的长为或6.

考点:1.相似三角形的判定与性质;2.等腰三角形的性质;3.直角三角形斜边上的中线;4.勾股定理.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在△ABC中,AB=AC=5,BC=8,点G为重心,那么GA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一个外角,且∠ACD=(6x-10)°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若点D、E、F分别为AB、BC、AC边的中点,点P为AB边上的一个动点(且不与点A、B重合),PQ∥AC,且交BC于点Q,以PQ为一边在点B的异侧作正方形PQMN,设正方形PQMN与矩形ADEF的公共部分的面积为S,BP的长为x,试求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.
求证:CE=
12
BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A=α时,求∠BPC的度数.

查看答案和解析>>

同步练习册答案