精英家教网 > 初中数学 > 题目详情
精英家教网如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=6,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为(  )
A、3
B、6
C、2
3
D、
3
分析:结合已知条件可知AC=3
3
,∠A=30°,推出∠D=30°,因此CE:DE=1:2,即CE:AC=1:3,即可推出CE的长度.
解答:解:∵∠ACB=90°,BC=3,AB=6,
∴∠A=30°,
∴AC=3
3
,∠A=∠D=30°
∴CE:DE=1:2,
∵AE=DE,
∴CE:AC=1:3,
∴CE=
3

故选择D.
点评:本题主要考查翻折变换的性质、直角三角形的性质,解题的关键在根据直角三角形三边的关系求出内角的度数,既而求出CE和AC的比例.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=6.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为(  )
A、3
B、6
C、
3
D、2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠(折痕为DE),使点C落在△ABC内的C′处,若∠AEC′=20°,则∠BDC′的度数是(  )
A、30°B、40°C、50°D、60°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•太原一模)如图,在三角形纸片ABC中,BC=3,AB=5,∠BCA=90°,将其对折后点A落在BC的延长线上,折痕与AC交于点E,则CE的长是(  )

查看答案和解析>>

同步练习册答案