精英家教网 > 初中数学 > 题目详情
16.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).
(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;
(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;
(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?

分析 (1)过点P作a的平行线,根据平行线的性质进行求解;
(2)过点P作b的平行线PE,由平行线的性质可得出a∥b∥PE,由此即可得出结论;
(3)设直线AC与DP交于点F,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.

解答 解:(1)证明:如图1,过点P作PE∥a,则∠1=∠CPE.
∵a∥b,PE∥a,
∴PE∥b,
∴∠2=∠DPE,
∴∠3=∠1+∠2,
即∠CPD=∠PCA+∠PDB;

(2)∠CPD=∠PCA-∠PDB.
理由:如图2,过点P作PE∥b,则∠2=∠EPD,
∵直线a∥b,
∴a∥PE,
∴∠1=∠EPC,
∵∠3=∠EPC-∠EPD,
∴∠3=∠1-∠2,
即∠CPD=∠PCA-∠PDB;

(3)∠CPD=∠PDB-∠PCA.
证明:如图3,设直线AC与DP交于点F,
∵∠PFA是△PCF的外角,
∴∠PFA=∠1+∠3,
∵a∥b,
∴∠2=∠PFA,
∴∠2=∠1+∠3,
∴∠3=∠2-∠1,
即∠CPD=∠PDB-∠PCA.

点评 本题考查的是平行线的性质,根据题意作出平行线,利用两直线平行,内错角相等进行推导是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.尺规作图
已知:如图,∠MAB=90°及线段AB.
求作:正方形ABCD.
要求:
(1)保留作图痕迹,不写做法,作出一个满足条件的正方形即可;
(2)写出你作图的依据.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.一个两位数的两个数字之和为11,两个数字之差为5.求这个两位数,此题的解(  )
A.0个B.1个C.2个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,正方形ABCD的对角线AC、BD相交于点O,点E在DB的延长线上,连接EC.过点D作DM⊥EC,垂足为M,DM与AC相交于点F,连接EF.求证:
EF∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,按要求作图:
(1)过点P作直线CD平行于AB;
(2)过点P作PE⊥AB,垂足为O.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,∠AEB=72°.
(I)求∠CAD和∠BAD的度数;
(2)若点F为线段BC上任意一点,当△EFC为直角三角形时,试求∠BEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.我们定义:有一组对角相等而另一组对角不相等的四边形叫做“等对角四边形”
(1)已知:四边形ABCD是“等对角四边形”,∠A=70°,∠B=80°,求∠C、∠D的度数

(2)如图,在Rt△ACB中,∠C=90°,CD为斜边AB上的中线,过点D作DE⊥CD交AC于点E,求证:四边形BCED是“等对角四边形”.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示:
AB
进价(万元/套)1.51.2
售价(万元/套)1.651.4
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.[毛利润=(售价-进价)×销售量]
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,点F是正方形ABCD的BC边所在直线上的一点,以BF为对角线作正方形BEFG连接AG,CE.
(1)求证:AG=CE;
(2)当点F在CB的延长线上时,CE交AB于点M,交AG于点H,如图2,求证:AG⊥CE;
(3)当点F在BC的延长线上时,如图3,延长EC交GF于点I,交AG的延长线于点H,当BG=2$\sqrt{13}$,EH=5GH时,求EH的长.

查看答案和解析>>

同步练习册答案