解:(1)①∵∠BAC=90°,θ=45°,
∴AP⊥BC,BP=CP(等腰三角形三线合一),
∴AP=BP(直角三角形斜边上的中线等于斜边的一半),
又∵∠MBN=90°,BM=BN,
∴AP=PN(等腰三角形三线合一),
∴AP=PN=BP=PC,且AN⊥BC,
∴四边形ABNC是正方形,
∴∠ANC=45°;
②连接CN,当θ≠45°时,①中的结论不发生变化.
理由如下:∵∠BAC=∠MBN=90°,AB=AC,BM=BN,
∴∠ABC=∠ACB=∠BNP=45°,
又∵∠BPN=∠APC,
∴△BNP∽△ACP,
∴
=
,
又∵∠APB=∠CPN,
∴△ABP∽△CNP,
∴∠ANC=∠ABC=45°;
(2)∠ANC=90°﹣
∠BAC.
理由如下:∵∠BAC=∠MBN≠90°,AB=AC,BM=BN,
∴∠ABC=∠ACB=∠BNP=
(180°﹣∠BAC),
又∵∠BPN=∠APC,
∴△BNP∽△ACP,
∴
=
,
又∵∠APB=∠CPN,
∴△ABP∽△CNP,
∴∠ANC=∠ABC,
在△ABC中,∠ABC=
(180°﹣∠BAC)=90°﹣
∠BAC.
(1)①证明四边形ABNC是正方形,根据正方形的对角线平分一组对角线即可求解;
②根据等腰直角三角形的性质可得∠BNP=∠ACB,然后证明△BNP和△ACP相似,根据相似三角形对应边成比例可得
=
,再根据两边对应成比例夹角相等可得△ABP和△CNP相似,然后根据相似三角形对应角相等可得∠ANC=∠ABC,从而得解;
(2)根据等腰三角形的两底角相等求出∠BNP=∠ACB,然后证明△BNP和△ACP相似,根据相似三角形对应边成比例可得
=
,再根据两边对应成比例夹角相等可得△ABP和△CNP相似,然后根据相似三角形对应角相等可得∠ANC=∠ABC,然后根据三角形的内角和定理列式整理即可得解.