有六张完全相同的卡片,分A、B两组,每组三张,在A组的卡片上分别画上√×√,B组的卡片上分别画上√××,如图1所示。
(1)若将卡片无标记的一面朝上摆在桌上,再发布从两组卡片中随机各抽取一张,求两张卡片上标记都是√的概率(请用树形图法或列表法求解)
(2)若把A、B两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记。
①若随机揭开其中一个盖子,看到的标记是√的概率是多少
②若揭开盖子,看到的卡片正面标记是√后,猜想它的反面也是√,求猜对的概率。
科目:初中数学 来源: 题型:
已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于
点A(1,4)和点B(m,﹣2),
(1)求这两个函数的关系式;
(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;
(3)如果点C与点A关于x轴对称,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
下表是我市某一天在不同时段测得的气温情况
0:00 | 4:00 | 8:00 | 12:00 | 16:00 | 20:00 |
25℃ | 27℃ | 29℃ | 32℃ | 34℃ | 30℃ |
则这一天气温的极差是 ℃.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A、B重合),点F在BC边上(不与点B、C重合)
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依此操作下去
(1) 图2中的三角形EFD是经过两次操作后得到的,其形状为_______,求此时线段EF的长;
(2) 若经过三次操作可得到四边形EFGH的形状为_________,此时AE与BF的数量关系是_______;
① 请判断四边形EFGH的形状为______,此时AE与BF的数量关系是_______
② 以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图(2),AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠BOC=
|
查看答案和解析>>
科目:初中数学 来源: 题型:
如图(13),E是直线AB、CD内部一点,AB∥CD,连接EA、ED (1)探究猜想: ①若∠A=30°,∠D=40°,则∠AED等于多少度? ②若∠A=20°,∠D=60°,则∠AED等于多少度? ③猜想图(13)中∠AED、∠EAB、∠EDC的关系并证明你的结论. (2)拓展应用: 如图(14),射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③④位于直线AB上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF的关系(不要求证明). | |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com