精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.

(1)当∠AOB=30°时,求弧AB的长;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.
;3;存在

试题分析:(1)连结BC,  
∵A(10,0),∴OA=10,CA=5,
∵∠AOB=30°,
∴∠ACB="2∠AOB=60°,"
∴弧AB的长=;……4分

(2)连结OD,
∵OA是⊙C直径,∴∠OBA=90°,
又∵AB=BD,
∴OB是AD的垂直平分线,
∴OD=OA=10,
在Rt△ODE中,
OE=,
∴AE=AO-OE=10-6=4,
由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,
得△OEF∽△DEA,
,即,∴EF=3;……8分
(3)设OE=x,
①当交点E在O,C之间时,由以点E、C、F为顶点的三角形与△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,当∠ECF=∠BOA时,此时△OCF为等腰三角形,点E为OC中点,即OE=
∴E1(,0);
当∠ECF=∠OAB时,有CE=5-x,AE=10-x,
∴CF∥AB,有CF=,
∵△ECF∽△EAD,
,即,解得:,
∴E2(,0);

②当交点E在点C的右侧时,
∵∠ECF>∠BOA,
∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO,
连结BE,
∵BE为Rt△ADE斜边上的中线,
∴BE=AB=BD,
∴∠BEA=∠BAO,
∴∠BEA=∠ECF,
∴CF∥BE,∴,
∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,
∴△CEF∽△AED,∴,
而AD=2BE,∴,
,解得,<0(舍去),
∴E3(,0);

③当交点E在点O的左侧时,
∵∠BOA=∠EOF>∠ECF.
∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO
连结BE,得BE==AB,∠BEA=∠BAO
∴∠ECF=∠BEA,
∴CF∥BE,
,
又∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,
∴△CEF∽△AED,∴
而AD=2BE,∴,
,解得,<0(舍去),
∵点E在x轴负半轴上,∴E4(,0),
综上所述:存在以点E、C、F为顶点的三角形与△AOB相似,此时点E坐标为:
,0)、,0)、,0)、,0).(12分)
点评:解答本题的关键是熟练掌握相似三角形的性质:相似三角形的对应边成比例,注意对应字母在对应位置上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知等边△ABC和Rt△DEF按如图所示的位置放置,点B,D重合,且点E、B(D)、C在同一条直线上.其中∠E=90°,∠EDF=30°,AB=DE=,现将△DEF沿直线BC以每秒个单位向右平移,直至E点与C点重合时停止运动,设运动时间为t秒.
(1)试求出在平移过程中,点F落在△ABC的边上时的t值;
(2)试求出在平移过程中△ABC和Rt△DEF重叠部分的面积s与t的函数关系式;
(3)当D与C重合时,点H为直线DF上一动点,现将△DBH绕点D顺时针旋转60°得到△ACK,则是否存在点H使得△BHK的面积为?若存在,试求出CH的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC中,AB>AC,D、E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:            ,使△ADE∽△ABC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点D在△ABC的边AB上,连接CD,下列条件:(1);(2);(3);(4),其中能判定△ACD∽△ABC的共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC中,BD和CE是两条高,如果∠A=45°,则    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN,当BM=         ,四边形ABCN的面积最大。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在比例尺为1∶4000000的中国地图上,量得淮安市与北京市相距27厘米,那么淮安市与北京市两地实际相距              千米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某同学利用影长测量学校旗杆的高度,在同一时刻,他测得自己的影长0.8米,旗杆的影长7米,已知他的身高1.6米,旗杆的高度为______米。
A.20B.7C.14D.12

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是 )
A.75cm2B.65cm2C.50cm2D.45cm2

查看答案和解析>>

同步练习册答案