精英家教网 > 初中数学 > 题目详情
如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=   
【答案】分析:根据垂径定理可以得到CE的长,在直角△OCE中,根据勾股定理即可求得.
解答:解:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.
∴CE=CD=4.
在直角△OCE中,OE===3.
则AE=OA-OE=5-3=2.
点评:此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)善于思考的小迪发现:半径为a,圆心在原点的圆(如图1),如果固定直径AB,把圆内的所有与y轴平行的弦都压缩到原来的
b
a
倍,就得到一种新的图形-椭圆(如图2).她受祖冲之“割圆术”的启发,采用“化整为零,积零为整”、“化曲为直,以直代曲”的方法,正确地求出了椭圆的面积,她求得的结果为
 

(2)小迪把图2的椭圆绕x轴旋转一周得到一个“精英家教网鸡蛋型”的椭球.已知半径为a的球的体积为
4
3
πa3,则此椭球的体积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-
3
3
x+2与y轴的交点A和点M(-
3
2
,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的精英家教网四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

善于思考的小迪发现:半径为a,圆心在原点的圆(如图1),如果固定直径AB,把圆内的所有与y轴平行的弦都压缩到原来的
ba
倍,就得到一种新的图形------椭圆(如图2),她受祖冲之“割圆术”的启发,采用“化整为零,积零为整”“化曲为直,以直代曲”的方法.正确地求出了椭圆的面积,她求得的结果为
 

精英家教网

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(35):23.5 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2012年四川省广安市中考数学模拟试卷(七)(解析版) 题型:解答题

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.

查看答案和解析>>

同步练习册答案