【题目】定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”;
理解:
⑴ 如图1,△ABC的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC为“相似对角线”的四边形,请用无刻度的直尺在网格中画出点D(保留画图痕迹,找出3个即可);
⑵ 如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC. 请问BD是四边形ABCD的“相似对角线”吗?请说明理由;
运用:
⑶ 如图3,已知FH是四边形EFGH的“相似对角线”, ∠EFH=∠HFG=30°.连接EG,若△EFG的面积为,求FH 的长.
【答案】(1)如图1,△ACD1、△ACD2、、△ACD3、△ACD4(任画三个即可);(2)BD是四边形ABCD的“相似对角线”,理由见解析;(3)FH=.
【解析】
(1)根据“相似对角线”的定义,利用方格纸的特点可找到D点的位置;
(2)先说明∠A+∠ADB=140°=∠ADC,即可说明理由;
(3)先判断出△FEHC∽△FHG,得出FH2=FE·FG,再求出EQ=FE,即可求得FH的值.
解:(1)由图1可得,AB=,BC=2
,∠ABC=90°,AC=5,
四边形ABCD是以AC为“相似对角线”的四边形,
①当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,
∴或
∴CD=10或CD=2.5
同理:当∠CAD=90°时,AD=2.5或AD=10.
根据方格纸的特点可找到D点的位置,然后再连接CD或AD
即如图△ACD1、△ACD2、、△ACD3、△ACD4(任画三个即可)即为所求;
(2)BD是四边形ABCD的“相似对角线”,理由如下:
∵∠ABC=80°,BD平分∠ABC,
∴∠ABD=∠DBC=40°,
∵∠A+∠ADB=140°
∵∠ADC=140°,
∴∠BDC+∠ADB=140°,
∴∠A=∠BDC,
∴△ABD∽△DBC,
∴BD是四边形ABCD的“相似对角线”;
(3)∵FH是四边形EFGH的“相似对角线”,
∴△EFH与△HFG相似,
∵∠EFH=∠HFG,
∴△FEHC∽△FHG,
∴
∴FH2=FE·FG,
如图3,过点E作EQ⊥FG于Q,
∴EQ=FE·sin60°=FE,
∵.
∴
∴FG·FE=24,
∵FH2=FE·FG,
∴FH2=24
∴FH=,FH=-
(舍去)
科目:初中数学 来源: 题型:
【题目】为实现区域教育均衡发展,我市计划对某县、
两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所
类学校和两所
类学校共需资金230万元;改造两所
类学校和一所
类学校共需资金205万元.
(1)改造一所类学校和一所
类学校所需的资金分别是多少万元?
(2)若该县的类学校不超过5所,则
类学校至少有多少所?
(3)我市计划今年对该县、
两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到
、
两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】儿童用药的剂量常常按他们的体重来计算,某种药品,体重的儿童,每次正常服用量为
;体重
的儿童每次正常服用量为
;体重在
范围内时,每次正常服用量
是儿童体重
的一次函数中,现实中,该药品每次实际服用量可以比每次正常服用略高一些,但不能超过正常服用量的1.2倍,否则会对儿童的身体造成较大损害.
(1)求与
之间的函数关系式,并写出自变量
的取值范围;
(2)若该药品的一种包装规格为/袋,求体重在什么范围的儿童生病时可以一次服下一袋药?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△EBF为等腰直角三角形,点B为直角顶点, 四边形ABCD是正方形.
⑴ 求证:△ABE≌△CBF;
⑵ CF与AE有什么特殊的位置关系?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区计划对面积为3600m2的区域进行绿化,经投标,由甲,乙两个工程队来完成,已知甲队4天能完成绿化的面积等于乙队8天完成绿化的面积,甲队3天能完成绿化的面积比乙队5天能完成绿化面积多50m2
(1)求甲、乙两工程队每天能完成绿化的面积;
(2)若甲队每天化费用是1.2万元,乙队每天绿化费用为0.5万元,要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与反比例函数
的图像交点A.点B,与x轴相交于点C,其中点A的坐标为(-2,4),点B的纵坐标为2.
(1)当x为何值时,一次函数的值大于反比例函数的值.(直接写出来)
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,矩形CDEF的顶点E在边AB上,D,F两点分别在边AC,BC上,且,将矩形CDEF以每秒1个单位长度的速度沿射线CB方向匀速运动,当点C与点B重合时停止运动,设运动时间为t秒,矩形CDEF与△ABC重叠部分的面积为S,则反映S与t的函数关系的图象为( )
A.B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示为3月22日至27日间,我区每日最高气温与最低气温的变化情况.
(1)最低气温的中位数是 ℃;3月24日的温差是 ℃;
(2)分别求出3月22日至27日间的最高气温的平均数、最低气温的平均数;
(3)经过计算,最高气温和最低气温的方差分别为6.33、5.67,数据更稳定的是最高气温还是最低气温?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com