【题目】长沙市教育局组织部分教师分别到A、B、C、D四个地方进行课程培训,教育局按定额购买了前往四地的车票,如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:
(1)若去A地的车票占全部车票的20%,求去C地的车票数,并补全条形统计图(图1);
(2)请从小到大写出这四类车票数的数字,并直接写出这四个数据的平均数和中位数;
(3)如图2,甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,李老师出去培训,否则张老师出去培训(指针指在线上重转),试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.
【答案】(1)30张,见解析;(2)10、20、30、40,平均数为25,中位数为25;(3)公平,见解析
【解析】
(1)先由去A地的车票占全部车票的20%求出车票总数,总数量减去A、B、D的数量即可求得C的数量,从而补全图形;
(2)将四个数字从小到大排列,根据平均数和中位数的概念求解可得;
(3)根据题意用列表法分别求出当指针指向的两个数字之和是偶数时的概率,即可求出这个规定对双方是否公平.
解:(1)∵全部车票数为20÷20%=100(张),
∴去C地车票数为100﹣(20+40+10)=30(张),
补全图形如下:
(2)从小到大写出这四类车票数的数字为:10、20、30、40,
则这四个数据的平均数为=25,中位数为=25;
(3)根据题意列表如下:
因为两个数字之和是偶数时的概率是=,
∴李老师出去培训的概率和张老师出去培训的概率相等,均为,
故这个规定对双方是公平的.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=2,点E是CD的中点,连接AE,将△ADE沿AE折叠至△AHE,连接BH,延长AE,BH交于点F;BF,CD交于点G,则FG=_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家为支持大学生创业,提供小额无息贷款,学生王芳享受政策无息贷款元用来代理品牌服装的销售.已知该品牌服装进价每件元,日销售(件)与销售价(元/件)之间的关系如图所示(实线),每天付员工的工资每人每天元,每天应支付其它费用元.
求日销售(件)与销售价(元/件)之间的函数关系式;
若暂不考虑还贷,当某天的销售价为元/件时,收支恰好平衡(收入支出),求该店员工人数;
若该店只有名员工,则该店至少需要多少天才能还清贷款,此时,每件服装的价格应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
成绩x(分)分数段 | 频数(人) | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
频数分布直方图
根据所给的信息,回答下列问题:
(1)m=________;n=________;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在________分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的2000名学生中成绩是“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将△ABC绕点C旋转180°得到△FEC.
(1)试猜想AE与BF有何关系?说明理由.
(2)若△ABC的面积为3cm2,求四边形ABFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在线段MN上存在点P、Q将线段MN分为相等的三部分,则称P、Q为线段MN的三等分点.
已知一次函数y=﹣x+3的图象与x、y轴分别交于点M、N,且A、C为线段MN的三等分点(点A在点C的左边).
(1)直接写出点A、C的坐标;
(2)①二次函数的图象恰好经过点O、A、C,试求此二次函数的解析式;
②过点A、C分别作AB、CD垂直x轴于B、D两点,在此抛物线O、C之间取一点P(点P不与O、C重合)作PF⊥x轴于点F,PF交OC于点E,是否存在点P使得AP=BE?若存在,求出点P的坐标?若不存在,试说明理由;
(3)在(2)的条件下,将△OAB沿AC方向移动到△O'A'B'(点A'在线段AC上,且不与C重合),△O'A'B'与△OCD重叠部分的面积为S,试求当S=时点A'的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径, BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB =2∠EAB.
(1)求证:AC是⊙O的切线;
(2)若,,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.
①求证:DQ=AE;
②推断:的值为 ;
(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;
(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:如图①,直线l1∥l2∥l3,点C在l2上,以点C为直角顶点作∠ACB=90°,角的两边分别交l1与l3于点A、B,连结AB,过点C作CD⊥l1于点D,延长DC交l3于点E.
(1)求证:△ACD∽△CBE.
(2)应用:如图②,在图①的基础上,设AB与l2的交点为F,若AC=BC,l1与l2之间的距离为2,l2与l3之间的距离为1,则AF的长度是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com