【题目】有这样一个问题:探究函数yx的图象与性质.
小亮根据学习函数的经验,对函数yx的图象与性质进行了探究.
下面是小亮的探究过程,请补充完整:
(1)函数yx中自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | … | ﹣2 | ﹣1 | 0 | 1 |
|
|
|
| 3 | 4 | 5 | 6 | … |
y | … |
|
|
| 0 |
|
|
|
| m |
|
|
| … |
求m的值;
(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)根据画出的函数图象,发现下列特征:
①该函数的图象是中心对称图形,对称中心的坐标是 ;
②该函数的图象与过点(2,0)且平行于y轴的直线越来越靠近而永不相交,该函数的图象还与直线 越来越靠近而永不相交.
【答案】(1)x≠2;(2)4;(3)见解析;(4)①(2,2);②y=x.
【解析】
(1)根据分母不为0即可得出关于x的一元一次不等式,解之即可得出结论;
(2)将x=3代入函数解析式中求出m值即可;
(3)连点成线即可画出函数图象;
(4)①观察函数图象,根据对称中心的定义即可求解;
②观察函数图象即可求解.
解:(1)由题意得:x﹣2≠0,
解得:x≠2.
故答案为:x≠2;
(2)当x=3时,m3=1+3=4,
即m的值为4;
(3)图象如图所示:
(4)观察函数图象发现:
①该函数的图象是中心对称图形,对称中心的坐标是(2,2).
故答案为(2,2);
②该函数的图象与过点(2,0)且平行于y轴的直线越来越靠近而永不相交,该函数的图象还与直线y=x越来越靠近而永不相交.
故答案为y=x.
科目:初中数学 来源: 题型:
【题目】如图,矩形的周长是
,且
比
长
.若点
从点
出发,以
的速度沿
方向匀速运动,同时点
从点
出发,以
的速度沿
方向匀速运动,当一个点到达点
时,另一个点也随之停止运动.若设运动时间为
,
的面积为
,则
与
之间的函数图象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).
根据以上信息回答下列问题:
(1)训练后学生成绩统计表中,并补充完成下表:
(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?
(3)经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为∠ABC的边上的一点,过点O作OM⊥AB于点
,到点
的距离等于线段OM的长的所有点组成图形
.图形W与射线
交于E,F两点(点在点F的左侧).
(1)过点作
于点
,如果BE=2,
,求MH的长;
(2)将射线BC绕点B顺时针旋转得到射线BD,使得∠,判断射线BD与图形
公共点的个数,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.
(1)求证:四边形BECD是矩形;
(2)连接DE交BC于点F,连接AF,若CE=2,∠DAB=30°,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,A F∥CE,且交BC于点F.
(1)求证:△ABF≌△CDE;
(2)如图,若∠1=65°,求∠B的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=x+3与两坐标轴交于A、B两点,以AB为斜边在第二象限内作等腰Rt△ABC,反比例函数y=
(x<0)的图象过点C,则m=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD中,对角线AC、BD相交于点O,且AC=12cm,BD=16cm,点P从点D出发,沿DA方向匀速向点A运动,速度为2cm/s;同时,点E从点B出发,沿BO方向匀速向点O运动,速度为1cm/s,EF∥BC,交OC于点F.当点P、E中有一点停止运动时,另一点也停止运动,线段EF也停止运动,连接PE、DF(0<t<5).解答下列问题:
(1)当t为何值时,PE∥AB?
(2)设四边形EFDP的面积为y(),求y与t之间的函数关系式.
(3)是否存在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.
(4)连接FP,是否存在某一时刻t,使得FP⊥AD?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com