精英家教网 > 初中数学 > 题目详情
8、某商场将进货价为每个30元的台灯以每个40元出售,平均每月能售出600个.经过调查表明:如果每个台灯的售价每上涨1元,那么其销售数量就将减少10个.为了实现平均每月10000元的销售利润,问每个台灯的售价应定为多少元?
分析:每个台灯获利(40+x)-30,共售出600-10x,则y=[(40+x)-30](600-10x),据此即可解答.
解答:解:设每个台灯应上涨x元
y=[(40+x)-30](600-10x)
化简:y=(x+10)(600-10x)
=10(600+50x-x2
=-10(x2-50x+625-1225)
=-10(x-25)2+12250
当y=10000时,-10(x-25)2+12250=10000
解得x1=40,x2=10,
故每个台灯的售价应定为40+40=80元或40+10=50元.
点评:本题考查的是二次函数的实际应用.难度一般.
练习册系列答案
相关习题

科目:初中数学 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

某商场将进货价为每个30元的台灯以每个40元出售,平均每月能售出600个.经过调查表明:如果每个台灯的售价每上涨1元,那么其销售数量就将减少10个.为了实现平均每月10000元的销售利润,问每个台灯的售价应定为多少元?

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(26):2.3 二次函数的应用(解析版) 题型:解答题

某商场将进货价为每个30元的台灯以每个40元出售,平均每月能售出600个.经过调查表明:如果每个台灯的售价每上涨1元,那么其销售数量就将减少10个.为了实现平均每月10000元的销售利润,问每个台灯的售价应定为多少元?

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(27):6.4 二次函数的应用(解析版) 题型:解答题

某商场将进货价为每个30元的台灯以每个40元出售,平均每月能售出600个.经过调查表明:如果每个台灯的售价每上涨1元,那么其销售数量就将减少10个.为了实现平均每月10000元的销售利润,问每个台灯的售价应定为多少元?

查看答案和解析>>

科目:初中数学 来源:第26章《二次函数》中考题集(25):26.3 实际问题与二次函数(解析版) 题型:解答题

某商场将进货价为每个30元的台灯以每个40元出售,平均每月能售出600个.经过调查表明:如果每个台灯的售价每上涨1元,那么其销售数量就将减少10个.为了实现平均每月10000元的销售利润,问每个台灯的售价应定为多少元?

查看答案和解析>>

同步练习册答案