精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB= CD,求⊙O半径.

【答案】
(1)证明:如图,连接CO,

∵CD与⊙O相切于点C,

∴∠OCD=90°,

∵AB是圆O的直径,

∴∠ACB=90°,

∴∠ACO=∠BCD,

∵∠ACO=∠CAD,

∴∠CAD=∠BCD,

在△ADC和△CDB中,

∴△ADC∽△CDB.


(2)解:设CD为x,

则AB= x,OC=OB= x,

∵∠OCD=90°,

∴OD= = = x,

∴BD=OD﹣OB= x﹣ x= x,

由(1)知,△ADC∽△CDB,

=

解得CB=1,

∴AB= =

∴⊙O半径是


【解析】(1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先设CD为x,则AB= x,OC=OB= x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得: = ,据此求出CB的值是多少,即可求出⊙O半径是多少.
【考点精析】利用切线的性质定理对题目进行判断即可得到答案,需要熟知切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是(
A.4.5米
B.6米
C.7.2米
D.8米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着互联网的发展,互联网消费逐渐深入人们的生活,如图所示的是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,有下列说法:其中正确说法的个数有( ) ①“快车”行驶里程不超过5公里计费8元;
②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;
③A点的坐标为(6.5,10.4);
④从合肥西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A重合),过点P作AB的垂线交BC于点Q.
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.
(2)若cosB= ,BP=6,AP=1,求QC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论: ①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣ ,0);⑤am2+bm+a≥0,其中所有正确的结论是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,假命题有( ) ①两点之间线段最短;②到角的两边距离相等的点在角的平分线上;
③过一点有且只有一条直线与已知直线平行;④垂直于同一直线的两条直线平行;
⑤若⊙O的弦AB,CD交于点P,则PAPB=PCPD.
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.求:

(1)单摆的长度( ≈1.7);
(2)从点A摆动到点B经过的路径长(π≈3.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A是反比例函数y=﹣ 的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算或解方程:
(1)( 0|﹣4tan45°+6cos60°﹣|﹣5|
(2)x2﹣3x=5(x﹣3)

查看答案和解析>>

同步练习册答案