已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△APQ∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.
(1)见解析;(2)AP的长为或6.
解析试题分析:(1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△APQ∽△ABC.
(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.
(I)当点P在线段AB上时,如题图1所示.由三角形相似(△APQ∽△ABC)关系计算AP的长;
(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.
试题解析:
(1)证明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C.
在△APQ与△ABC中,∵∠APQ=∠C,∠A=∠A,
∴△APQ∽△ABC.
(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.
∵∠BPQ为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ.
(I)当点P在线段AB上时,如题图1所示,
由(1)可知,△APQ∽△ABC,
∴,即,解得:.
∴.
(II)当点P在线段AB的延长线上时,如题图2所示,
∵BP=BQ,∴∠BQP=∠P.
∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A.∴BQ=AB.
∴AB=BP,点B为线段AB中点.
∴AP=2AB=2×3=6.
综上所述,当△PQB为等腰三角形时,AP的长为或6.
考点:1.相似三角形的判定与性质;2.等腰三角形的性质;3.直角三角形斜边上的中线;4.勾股定理.
科目:初中数学 来源: 题型:解答题
如图,在△ABC中,AC=8cm,BC=16cm,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.则 (填“<”或“=”或“>”);
(2)如图2,若四边形ABCD是平行四边形,试探究:
当∠B与∠EGC满足什么关系时,使得=成立?并证明你的结论;
(3)如图3,若BA="BC=" 3,DA="DC=" 4,∠BAD= 90°,DE⊥CF.则的值为 .
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米.求路灯的高.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.
求证:(1)点F是DC上一点,连接EF,交AC于点O(如图1),△AOE∽△COF;
(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,梯形ABCD是一个拦河坝的截面图,坝高为6米.背水坡AD的坡角为,为了提高河坝的抗洪能力,防汛指挥部决定加固河坝,若坝顶CD加宽0.8米,新的背水坡EF的坡度为1:1.4.河坝总长度为500米.
(1)求完成该工程需要多少立方米方土?
(2)某工程队在加固600立方米土后,采用新的加固模式,这样每天加固方数是原来的2倍,结果只用11天完成了大坝加固的任务.请你求出该工程队原来每天加固多少立方米土?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD,垂足为E.
(1)求证:△ABE∽△DBC;
(2)求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图1,在正方形ABCD中,AB=1,点E在AB延长线上,联结CE、DE,DE交边BC于点F,设BE,CF.
图1
(1)求关于的函数解析式,并写出的取值范围;
(2)如图2,对角线AC、BD的交点记作O,直线OF交线段CE于点G,求证:;
图2
(3)在(2)的条件下,当时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com