分析 (1)先通分,再把分子相加减,把结果化为最简分式即可;
(2)先求出n的取值范围,再得出n的整数值代入(1)中M的表达式即可.
解答 解:(1)M=$\frac{(1+n)^{2}}{(1+n)(1-n)}$+$\frac{n(1+n)}{(1+n)(1-n)}$
=$\frac{{(1+n)}^{2}+n(1+n)}{(1+n)(1-n)}$
=$\frac{(1+n)(1+2n)}{(1+n)(1-n)}$
=$\frac{1+2n}{1-n}$;
(2)解不等式组$\left\{\begin{array}{l}1-n≤0\\ n-3<0\end{array}\right.$得,1≤n<3,
故n的整数解为1,2,
当n=1时原式无意义;
当n=2时,原式=$\frac{1+4}{1-2}$=-5.
点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0个 | B. | 2个 | C. | 3个 | D. | 6个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com