精英家教网 > 初中数学 > 题目详情
20.问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义证明完全平方公式.
证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:
这个图形的面积可以表示成:
(a+b)2或 a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
这就验证了两数和的完全平方公式.
类比解决:
(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)
问题提出:如何利用图形几何意义的方法证明:13+23=32
如图2,A表示1个1×1的正方形,即:1×1×1=13
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
尝试解决:
(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=62.(要求写出结论并构造图形写出推证过程).
(3)问题拓广:
请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=[$\frac{1}{2}$n(n+1)]2.(直接写出结论即可,不必写出解题过程)

分析 (1)尝试解决:如图:边长为a,b的两个正方形,边保持平行,从大正方形中剪去小正方形,剩下的图形可以分割成2个长方形并拼成一个大长方形.根据第一个图形的阴影部分的面积是a2-b2,第二个图形的阴影部分的面积是(a+b)(a-b),可以验证平方差公式;
(2)尝试解决:如图,A表示一个1×1的正方形,B、C、D表示2个2×2的正方形,E、F、G表示3个3×3的正方形,而A、B、C、D、E、F、G恰好可以拼成一个边长为(1+2+3)的大正方形,根据大正方形面积的两种表示方法,可以得出13+23+33=62
(3)问题拓广:由上面表示几何图形的面积探究知,13+23+33+…+n3=(1+2+3+…+n)2,进一步化简即可.

解答 解:(1)∵如图,左图的阴影部分的面积是a2-b2
右图的阴影部分的面积是(a+b)(a-b),
∴a2-b2=(a+b)(a-b),
这就验证了平方差公式;


(2)如图,A表示1个1×1的正方形,即1×1×1=13
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,
因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23
G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33
而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,
由此可得:13+23+33=(1+2+3)2=62
故答案为:62


(3)由上面表示几何图形的面积探究可知,13+23+33+…+n3=(1+2+3+…+n)2
又∵1+2+3+…+n=$\frac{1}{2}$n(n+1),
∴13+23+33+…+n3=[$\frac{1}{2}$n(n+1)]2
故答案为:[$\frac{1}{2}$n(n+1)]2

点评 此题主要考查了平方差公式的几何背景,熟练掌握通过不同的方法计算同一个图形的面积来证明一些公式的方法,利用数形结合是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源:2017届湖北省枝江市九年级3月调研考试数学试卷(解析版) 题型:判断题

如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.

(1)求经过A、B、C三点的抛物线的解析式;

(2)当BE经过(1)中抛物线的顶点时,求CF的长;

(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:$\root{3}{8}$-|-$\sqrt{3}$|+($\frac{1}{3}$)-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在△ABC中,∠ABC=∠ACB,BD是AC边上的高,且∠ABD=15°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,点A、点B分别在反比例函数y=$\frac{5}{x}$和y=$\frac{8}{x}$的图象上,且AB∥x轴,则△OAB的面积等于$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算题
(1)($\frac{1}{2}$)-1+(-2)0-|-2|-(-3)
(2)a•a2•a3+(a32-(-2a23

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.△ABC在平面直角坐标系中的位置如图所示.
(1)作△ABC关于原点O成中心对称的△A1B1C1
(2)请写出点B关于y轴对称的点B2的坐标(1,1).若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值2<h<3.5(写出满足的一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.
(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?
(2)当标价总额是多少时,甲、乙超市实付款一样?
(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知一个正多边形的内角和是1800°,则这个正多边形的外角是30度.

查看答案和解析>>

同步练习册答案