精英家教网 > 初中数学 > 题目详情
已知x1、x2是关于x的一元二次方程4x2+4(m+1)x+m2=0的两个不相等的实数根,求m的取值范围.
分析:若方程有两个不相等的实数根,则根的判别式△>0,解得m的取值范围.
解答:解:∵关于x的一元二次方程4x2+4(m+1)x+m2=0的两个不相等的实数根,
∴△=16(m+1)2-16m2>0,
解得m>-
1
2
点评:本题主要考查根的判别式△=b2-4ac的情况,当△=b2-4ac>0方程有两个不相等的实数根,当△=b2-4ac=0,方程有两个相等的实数根,当△=b2-4ac<0,方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知x1,x2是关于x的一元二次方程x2-6x+k=0的两个实数根,且x12x22-x1-x2=115.
(1)求k的值;
(2)求x12+x22+8的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知x1、x2是关于x的方程x2-2x+t+2=0的两个不相等的实数根.
(1)求t的取值范围;
(2)设S=x1•x2,求S关于t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1,x2是关于x的方程x2+mx+n=0的两根,x1+1,x2+1是关于x的方程x2+nx+m=0的两根,求m,n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1、x2是关于x的一元二次方程x2+(3a-1)x+2a2=0的两个实数根,使得(3x1-x2)(x1-3x2)=-80成立,求其实数a的可能值.

查看答案和解析>>

同步练习册答案