精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,AB是⊙O的直径,AC是弦,OD⊥AC于点E,交⊙O于点F,连接BF,CF,∠D=∠BFC.
(1)求证:AD是⊙O的切线;(2)若AC=8,tanB=
12
,求AD的长.
分析:(1)根据OD⊥AC,得到∠1+∠2=90°,再用同弧所对的圆周角相等得到∠1=∠BFC,然后等量代换得到∠OAD=90°,证明AD是⊙O的切线.(2)根据垂径定理求出AE的长,由同弧所对的圆周角相等得到∠C=∠B,求出EF的长,然后在直角△OAE中利用勾股定理求出圆的半径OA的长,再在直角△OAD中用三角函数求出AD的长.
解答:精英家教网(1)证明:∵OD⊥AC于点E,
∴∠OEA=90°,∠1+∠2=90°.
∵∠D=∠BFC,∠BFC=∠1,
∴∠D+∠2=90°,∠OAD=90°.
∴OA⊥AD于点A.
∵OA是⊙O的半径,
∴AD是⊙O的切线.

(2)解:∵OD⊥AC于点E,AC是⊙O的弦,AC=8,
AE=EC=
AC
2
=4

∵∠B=∠C,tanB=
1
2

∴在Rt△CEF中,∠CEF=90°,tanC=
1
2

∴EF=EC•tanC=2.
设⊙O的半径为r,则OE=r-2.
在Rt△OAE中,由勾股定理得OA2=OE2+AE2,即r2=(r-2)2+42
解得r=5.
∴在Rt△OAE中,tan∠2=
AE
OE
=
4
3

∴在Rt△OAD中,AD=OA•tan∠2=5×
4
3
=
20
3
点评:本题考查的是切线的判定,(1)根据已知条件求出∠OAD=90°,利用切线的判定定理可以判定AD是⊙O的切线.(2)在直角三角形中分别利用勾股定理和三角函数进行计算求出线段AD的长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案