精英家教网 > 初中数学 > 题目详情
(2005•荆门)已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF
(1)求证:AB=AC;
(2)若AC=3cm,AD=2cm,求DE的长.

【答案】分析:(1)由圆内接四边形的性质,可求得∠ABC=∠2;由于∠1=∠2=∠3=∠4,故∠ABC=∠4,由此得证.
(2)证△ABD∽△AEB,通过相似三角形的对应成比例线段,求出AE及DE的值.
解答:(1)证明:∵∠ABC=∠2,∠2=∠1=∠3,∠4=∠3
∴∠ABC=∠4
∴AB=AC;

(2)解:∵∠3=∠4=∠ABC,∠DAB=∠BAE
∴△ABD∽△AEB

∵AB=AC=3,AD=2
∴AE=
∴DE=(cm).
点评:本题综合考查了角平分线,相似三角形,圆内接四边形的性质,是中学阶段的常规题目.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2005•荆门)已知:如图,抛物线y=x2-x+m与x轴交于A、B两点,与y轴交于C点,∠ACB=90°,
(1)求m的值及抛物线顶点坐标;
(2)过A、B、C的三点的⊙M交y轴于另一点D,连接DM并延长交⊙M于点E,过E点的⊙M的切线分别交x轴、y轴于点F、G,求直线FG的解析式;
(3)在条件(2)下,设P为上的动点(P不与C、D重合),连接PA交y轴于点H,问是否存在一个常数k,始终满足AH•AP=k?如果存在,请写出求解过程;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年湖北省荆门市中考数学试卷(解析版) 题型:解答题

(2005•荆门)已知:如图,抛物线y=x2-x+m与x轴交于A、B两点,与y轴交于C点,∠ACB=90°,
(1)求m的值及抛物线顶点坐标;
(2)过A、B、C的三点的⊙M交y轴于另一点D,连接DM并延长交⊙M于点E,过E点的⊙M的切线分别交x轴、y轴于点F、G,求直线FG的解析式;
(3)在条件(2)下,设P为上的动点(P不与C、D重合),连接PA交y轴于点H,问是否存在一个常数k,始终满足AH•AP=k?如果存在,请写出求解过程;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2005•荆门)已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF
(1)求证:AB=AC;
(2)若AC=3cm,AD=2cm,求DE的长.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《一元二次方程》(05)(解析版) 题型:解答题

(2005•荆门)已知:关于x的方程x2-(k+1)x+k2+1=0的两根是一个矩形两邻边的长.
(1)k取何值时,方程有两个实数根;
(2)当矩形的对角线长为时,求k的值.

查看答案和解析>>

同步练习册答案