精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AD平分∠BACBC于点D,AE⊥BC,垂足为E,且CF∥AD.

(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE=   度;

(2)若图1中的∠B=x,∠ACB=y,则∠CFE=   ;(用含x、y的代数式表示)

(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.

【答案】(1)20;(2)y﹣x;(3)(2)中的结论成立.

【解析】

(1)求∠CFE的度数,求出∠DAE的度数即可,只要求出∠BAE-∠BAD的度数,由平分和垂直易得∠BAE∠BAD的度数即可;
(2)由(1)类推得出答案即可;
(3)类比以上思路,把问题转换为∠CFE=90°-∠ECF解决问题.

解:(1)∵∠B=30°,ACB=70°,

∴∠BAC=180°﹣B﹣ACB=80°,

AD平分∠BAC,

∴∠BAD=40°,

AEBC,

∴∠AEB=90°

∴∠BAE=60°

∴∠DAE=BAE﹣BAD=60°﹣40°=20°,

CFAD,

∴∠CFE=DAE=20°

故答案为:20

2)∵∠BAE=90°﹣∠B,∠BAD=BAC=180°B﹣∠BCA),

∴∠CFE=DAE=BAE﹣∠BAD=90°﹣∠B180°﹣∠B﹣∠BCA=(∠BCA﹣∠B=yx

故答案为: yx

3)(2)中的结论成立.

∵∠B=x,ACB=y,

∴∠BAC=180°﹣x﹣y,

AD平分∠BAC,

∴∠DAC=BAC=90°﹣x﹣y,

CFAD,

∴∠ACF=DAC=90°﹣x﹣y

∠BCF=y+90°﹣x﹣y=90°﹣x+y,

∠ECF=180°﹣BCF=90°+x﹣y,

AE⊥BC,

∴∠FEC=90°,

∴∠CFE=90°﹣ECF=y﹣x.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).

(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;

(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到ABC,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,EF是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知有一块等腰三角形纸板,在它的两腰上各有一点EF,把这两点分别与底边中点连结,并沿着这两条线段剪下两个三角形,所得的这两个三角形相似,剩余部分(四边形)的四条边的长度如图所示,那么原等腰三角形的底边长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,ABC是格点三角形(三角形的三个顶点都是小正方形的顶点).

1)在第一象限内找一点P,以格点PAB为顶点的三角形与ABC相似但不全等,请写出符合条件格点P的坐标;

2)请用直尺与圆规在第一象限内找到两个点MN,使∠AMB=ANB=ACB.请保留作图痕迹,不要求写画法.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABx轴上一点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).

(1)求直线AB的解析式及抛物线y=ax2的解析式;

(2)求点C的坐标;

(3)求SCOB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请将下列证明过程补充完整:

已知:如图,AE平分∠BACCE平分∠ACD,且∠α+∠β90°.

求证:ABCD.

证明:∵CE平分∠ACD (已知),

∴∠ACD2α(______________________)

AE平分∠BAC (已知)

∴∠BAC_________(______________________)

∵∠α+∠β90°(已知),

2α2β180°(等式的性质)

∴∠ACD+∠BAC==_________(______________________)

ABCD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数的图象经过点A13).

1)试确定此反比例函数的解析式;

2)当=2, y的值;

3)当自变量5增大到8时,函数值y是怎样变化的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABDE,B=60°,AEBC,垂足为点E.

(1)求∠AED的度数;

(2)当∠EDC满足什么条件时,AEDC,证明你的结论.

查看答案和解析>>

同步练习册答案