精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2+4ax+3a2(a>0)
(1)求证:抛物线的顶点必在x轴的下方;
(2)设抛物线与x轴交于A、B两点(点A在点B的右边),过A、B两点的圆M与y轴相切,且点M的纵坐标为,求抛物线的解析式;
(3)在(2)的条件下,若抛物线的顶点为P,抛物线与y轴交于点C,求△CPA的面积.
【答案】分析:(1)判定抛物线的顶点必在x轴的下方,根据开口方向,二次函数只要与x轴有两个交点即可.
(2)利用垂径定理,勾股定理可以求出
(3)利用三角形面积公式,以CD为底边,P到y轴的距离为高,可以求出.
解答:(1)证明:抛物线y=x2+4ax+3a2开口向上,且a>0
又△=(4a)2-4×3a2=4a2>0
∴抛物线必与x轴有两个交点
∴其顶点在x轴下方

(2)解:令x2+4ax+3a2=0
∴x1=-a,x2=-3a2
∴A(-a,0),B(-3a,0)
又圆M与y轴相切,
∴MA=2a
如图在Rt△MAC中,MA2=NA2+NM2即(2a)2=a2+(2
∴a=±1(负值舍去)
∴抛物线的解析式为y=x2+4x+3

(3)解:P(-2,-1),A(-1,0),C(0,3)
设直线PA的方程:y=kx+b,则-1=-2k+b
0=-k+b
∴k=1
b=1
∴y=x+1,令x=0得y=1
∴D(0,1)
∴S△CPA=S△PCD-S△CAD=×2×2-×2×1=1
点评:此题主要考查了根的判别式,以及二次函数与圆的综合性题目,在思考是适应注意,把所有已知条件全部用上,根据所得结论,才能求出.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案