精英家教网 > 初中数学 > 题目详情

【题目】(10分) 把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.

(1)求证:BHE≌△DGF;

(2)若AB=6cm,BC=8cm,求线段FG的长.

【答案】解:(1)(5分) 四边形ABCD是矩形

∴∠A=C=90O,AB CD

∴∠ABD=CDB

∵△BHE、DGF分别是由BHA、DGC折叠所得

BE=AB,DF=CD, HEB=A, GFD=C

HBE=ABD, GDF=CDB

∴∠HBE=GDF, HEB=GFD,BE=DF

∴△BHE≌△DGF

(2)(5分) 在RtBCD中,AB=CD=6,BC=8

BD=

BF=BD-DF=BD-CD=4

设FG=,则BG=BC-CG=BC-FG=8-,

则有:

解得=3

线段FG的长为3.

【解析】

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.

(1)若AC=5,BC=13,求⊙O的半径;
(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.

(1)求证:△ADC≌△CEB;

(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.

(1)求证:∠BME=∠MAB;
(2)求证:BM2=BEAB;
(3)若BE= ,sin∠BAM= ,求线段AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,把绕着点逆时针旋转,得到,点.

1)若,求得度数;

2)若,求边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图边长为6的大正方形中有两个小正方形若两个小正方形的面积分别为S1、S2S1+S2的值为(

A. 17 B. 18 C. 19 D. 20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,点E在CD边上,点F在DC延长线上,AE=BF.

(1)求证:四边形ABFE是平行四边形;

(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m(踏板厚度忽略不计), 右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.

(1)求抛物线的解析式及点D的坐标;
(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.

查看答案和解析>>

同步练习册答案