精英家教网 > 初中数学 > 题目详情
15.若a<b,则下列不等式成立的是(  )
A.-a>-bB.-a+1>b+1C.$\frac{1}{a}$>$\frac{1}{b}$D.ac<bc

分析 根据不等式的性质,逐一判断可得答案.

解答 解:A、根据不等式的基本性质3,两边都乘以-1得:-a>-b,故此选项正确;
B、当a=1、b=2时,-a+1<b+1,故此选项错误;
C、当a=-1、b=1时,$\frac{1}{a}$<$\frac{1}{b}$,故此选项错误;
D、当c<0时,由不等式性质3可得ac>bc,故此选项错误;
故选:A.

点评 本题考查了不等式的性质,主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.成都地铁规划到2020年将通车13条线路,近几年正是成都地铁加紧建设和密集开通的几年,市场对建材的需求量有所提高,根据市场调查分析可预测:投资水泥生产销售后所获得的利润y1(万元)与投资资金量x(万元)满足正比例关系y1=20x;投资钢材生产销售的后所获得的利润y2(万元)与投资资金量x(万元)满足函数关系的图象如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).
(1)直接写出当0<x<30及x>30时,y2与x之间的函数关系式;
(2)某建材经销公司计划投资100万元用于生产销售水泥和钢材两种材料,若设投资钢材部分的资金量为t(万元),生长销售完这两种材料后获得的总利润为W(万元).
①求W与t之间的函数关系式;
②若要求投资钢材部分的资金量不得少于45万元,那么当投资钢材部分的资金量为多少万元时,获得的总利润最大?最大总利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,已知点A的坐标是(4,0),且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的表达式;
(2)在抛物线上是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,为了开发利用海洋资源,我勘测飞机测量钓鱼岛附属岛屿之一的北小岛(又称为鸟岛)两侧端点A,B的距离,飞机在距海平面垂直高度为100米的北小岛上方点C处测得端点A的俯角为30°,测得端点B的俯角为45°,求北小岛两侧端点A,B的距离(结果精确到1米,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.要使式子$\frac{{\sqrt{x-1}}}{x-3}$-x+2有意义,则x的取值范围是(  )
A.x>1B.x≥1C.x≥1且x≠3D.x≥3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.【操作发现】在计算器上输入一个正数,不断地按“$\sqrt{(\;\;\;\;)}$”键求算术平方根,运算结果越来越接近1或都等于1.
【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?
【分析问题】我们可用框图表示这种运算过程(如图a).
也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后在x轴上确定对应的数x2,…,以此类推.
【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果xn,怎样变化.

(1)若k=2,b=-4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;
(2)若k>1,又得到什么结论?请说明理由;
(3)①若k=-$\frac{2}{3}$,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;
②若输入实数x1时,运算结果xn互不相等,且越来越接近常数m,直接写出k的取值范围及m的值(用含k,b的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.我市飞鹤中学初三(一)班某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30.则这组数据的众数与中位数分别是(  )
A.30,27B.30,29C.29,30D.30,28

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4$\sqrt{2}$,其中正确的结论个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案